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1. Introduction

The notion of sl2-categorifications was introduced by J. Chuang and R. Rouquier
in [ChRo]. In op. cit. it is explained how an sl2-categorification on an abelian
category A leads to an auto-equivalence of the derived category Db(A). This is in
turn elegantly exploited to give a proof of Broué’s abelian defect group conjecture
for blocks of symmetric groups [ChRo, Thm. 7.6].

The q-Schur algebra is the centralizer algebra of a certain module for the finite
Hecke algebra of type A (see [ChRo, §7.6] for the precise definition). In [ChRo], the
authors explain how sl2-categorifications may be obtained for the q-Schur algebras.
This is done by constructing sl2-categorifications for the finite Hecke algebra and
then transferring these to the q-Schur algebra using a ‘double centralizer theorem’
(see [ChRo, §7.6]).

The purpose of this note is to give a direct construction of sl2-categorifications for
the quantum group Uq(gln) (Prop. 6.5.1 and Prop. 7.6.1). A particular motivation
for doing so is Thm. 6.7.1 which is in the same spirit as [ChRo, Thm. 7.24]. A related
example fitting into this setup can also be found in [BS] (see Remark 5.7 therein).
We construct sl2-categorifications for Uq(gln) in the case of generic q (see §6)and
for q an `-th root of unity (see §7). The reader will note that in the root of unity
case we allow ` = ∞. However, this does not subsume the case of generic q in §6 as
the categories of Uq(gln)-modules that we work with are different. In §6 we work in
category O that, in particular, contains infinite dimensional modules such as Verma
modules. In §7 we work with categories of finite dimensional representations.

Let me now briefly explain how the approach in this note differs from the one in
[ChRo, §7.6]. One of the ingredients required to construct an sl2-categorification is
an appropriate action of the affine Hecke algebra (see §4). In [ChRo, §7.6] this action
is automatic, since there the authors work with modules for the Hecke algebra and
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use a double centralizer theorem to obtain the sl2-categorification for the q-Schur
algebra. The approach in this note places the affine Hecke action in the general
context of ribbon categories (see §3). This is the main point of departure between
the two approaches.

Some final comments (I thank the anonymous referee for bringing these to my
attention): Cor. 7.6.2 is folklore, it has its origins in a similar result for algebraic
groups due to J. Rickard [Ric, Prop. 2.2]. Further, although in this note we work
over the complex numbers C, it seems plausible that all the results go through in
the ‘mixed case’ (= working over a field of characteristic p with p prime to the order
of q). In this situation the relevant results on the representation theory of Uq(gln)
would be provided by [AW]. However, I have not checked the details. In particular,
I am not sure that no subtleties arise with respect to the braided/ribbon structure
on the categories in question.

2. Monoidal categories

The purpose of this section is to precisely define the type of categories we will
be working with. This avoids all possible confusion as to ‘how strict’ our monoidal
structures are. The exposition mainly follows [Tu] (also see [CP]).

2.1. A strict monoidal category is a 3-tuple C = (C,⊗,1) consisting of a category
C, a bifunctor ⊗ : C×C → C, a distinguished object 1 ∈ C called the unit, satisfying
the following:

(i) For all V ∈ C, 1⊗ V = V and V ⊗ 1 = V .
(ii) Let X1 and X2 are two expressions obtained from V1 ⊗ V2 ⊗ · · · ⊗ Vm by

inserting 1’s and grammatically correct parentheses: an example of such
an expression is (V1 ⊗ 1)⊗ ((V2 ⊗ V3)⊗ · · · ⊗ Vm). Then X1 = X2.

2.1.1. Remark. Almost all the examples of monoidal categories that arise ‘in na-
ture’ are non-strict (for example, vector spaces). That is, all the equalities in the
defining axioms need to be replaced by functorial isomorphisms. Fortunately, it is
known that every monoidal category is equivalent to a strict one [MacL, Ch. XI §3,
Thm. 1]. This result will constantly be invoked to omit parentheses and the asso-
ciativity and unit isomorphisms in our formulas even when dealing with non-strict
monoidal categories.

2.2. Commutativity constraints. A braiding or R-matrix in a strict monoidal
category C is a collection of isomorphisms

RV W : V ⊗W
∼−→W ⊗A,

for all V,W ∈ C, satisfying:
(i) For every f : X → X ′ and g : Y → Y ′ in C, the diagram

X ⊗ Y

RXY
��

f⊗g
// X ′ ⊗ Y ′

RX′Y ′
��

Y ⊗X
g⊗f

// Y ′ ⊗X ′

(2.1)

commutes.
(ii) For every X ∈ C, RX1 = id = R1X . In particular, R11 = id.
(iii) The following two diagrams commute for all X, Y, Z ∈ C:

X ⊗ Y ⊗ Z
id⊗RY Z

vv

R(X⊗Y )Z

((

X ⊗ Z ⊗ Y
RXZ⊗id

// Z ⊗X ⊗ Y

(2.2)



DERIVED EQUIVALENCES AND sl2-CATEGORIFICATIONS FOR Uq(gln) 3

X ⊗ Y ⊗ Z
RXY ⊗id

vv

RX(Y⊗Z)

((

Y ⊗X ⊗ Z
id⊗RXZ

// Y ⊗ Z ⊗X

(2.3)

Combining (2.2) and (2.3) we obtain the ‘hexagon diagram’, i.e.

Y ⊗X ⊗ Z
id⊗RXZ

((

X ⊗ Y ⊗ Z

RXY ⊗id
66

id⊗RY Z
��

RX(Y⊗Z)
// Y ⊗ Z ⊗X

RY Z⊗id
��

X ⊗ Z ⊗ Y

RXZ⊗id ((

RX(Z⊗Y )
// Z ⊗ Y ⊗X

Z ⊗X ⊗ Y
id⊗RXY

66

(2.4)

commutes for all X, Y, Z ∈ C.

2.3. Duals. Let C be a strict monoidal category and let V ∈ C. A left dual to V is
an object V ∗ ∈ C along with two morphisms

εV : V ∗ ⊗ V → 1 and ηV : 1→ V ⊗ V ∗, (2.5)

such that the compositions

V = 1⊗ V
ηV ⊗id

// V ⊗ V ∗ ⊗ V
id⊗εV

// V ⊗ 1 = V, (2.6)

V ∗ = V ∗ ⊗ 1
id⊗ηV

// V ∗ ⊗ V ⊗ V ∗ εV ⊗id
// 1⊗ V ∗ = V ∗ (2.7)

are equal to the identity. Similarly, the right dual of an object V is an object V ~ ∈ C

along with morphisms

ε′V : V ⊗ V ~ → 1 and η′V : 1→ V ~ ⊗ V, (2.8)

satisfying the obvious analogues of the identities in the previous definition.

2.3.1. Remark. In [Tu] only V ∗ is considered and is simply called the dual of V .
Our choice of ‘left/right’ is justified by the fact that the functor V ∗ ⊗ − is left
adjoint to V ⊗−. Similarly V ~ ⊗− is right adjoint to V ⊗−.

2.4. Ribbon categories. A ribbon category C is a braided category equipped with
an automorphism θ = {θX : X

∼−→X |X ∈ C} of the identity functor, satisfying:

θX⊗Y ◦ (θX ⊗ θY )−1 = RY X ◦ RXY , (2.9)

for all X, Y ∈ C.

3. Affine braid group action in ribbon categories

3.1. Let C be a ribbon category. Fix an object V in C. Denote by FV the functor
V ⊗− : C → C. Define an endomorphism Y = {YM : FV (M) → FV (M) |M ∈ C} of
FV by

YM (V ⊗M) = RMV ◦ RV M (V ⊗M).
Define an endomorphism σ = {σM : F 2

V (M) → F 2
V (M) |M ∈ C} of F 2

V by

σM (V ⊗2 ⊗M) = (RV V ⊗ id)(V ⊗2 ⊗M).

Let k ∈ Z>0 and define endomorphisms Yi, 1 ≤ i ≤ k +1 and σi, 1 ≤ i ≤ k of F k+1
V

by
Yi = id⊗k−i+1 ⊗ YV ⊗i−1⊗M , σi = id⊗k−i ⊗ σV ⊗i−1⊗M .

The following is well known (for instance, see [LR]).



4 R. VIRK

3.1.1. Proposition. Let M ∈ C. The following equalities hold in End(F k+1
V (M)):

σiσj = σjσi, if |i− j| > 1; (3.1)

σiσi+1σi = σi+1σiσi+1, (3.2)

σiYiσi = Yi+1, (3.3)

σiYj = Yjσi, if |i− j| > 1; (3.4)

σiYiYi+1 = Yi+1Yiσi, (3.5)

YiYj = YjYi. (3.6)

Proof. The equality (3.1) is clear from the definition of the σis. It suffices to verify
(3.2) for i = 1. In this case it is simply the outer arrows of (2.4) with X = Y =
Z = V . To prove (3.3) it is again sufficient to do so for i = 1. That is, we need to
show

(RV V ⊗ id) ◦ (id⊗ RMV ) ◦ (id⊗ RV M ) ◦ (RV V ⊗ id) = R(V⊗M)V ◦ RV (V⊗M).

Set X = Y = V and Z = M in (2.3) to get (id⊗ RV M ) ◦ (RV V ⊗ id) = RV (V⊗M).
Set X = Z = V and Y = M in (2.2) to get (RV V ⊗ id) ◦ (id⊗ RMV ) = R(V⊗M)V .
This gives the desired equality.

The equality (3.4) is clear if i > j + 1. If j > 1 + i then (3.4) follows by
applying (2.1) (twice) with X = X ′ = V ⊗k−j+1, Y = Y ′ = V ⊗j−1, f = id⊗k−i,
g = σV ⊗i−1⊗M . Equation (3.5) is immediate from (3.3).

Finally, to show (3.6) we may assume that i > j. If i > j + 1, then the equality
is clear from (3.1) and (3.3). If i = j + 1, then we are reduced to proving the claim
for j = 1. That is, we want to show

R(V⊗M)V ◦ RV (V⊗M) ◦ (id⊗ RMV ) ◦ (id⊗ RV M )

=(id⊗ RMV ) ◦ (id⊗ RV M ) ◦ R(V⊗M)V ◦ RV (V⊗M).

Set X = Z = V and Y = M in the middle rectangle of (2.4) to get

R(V⊗M)V ◦ RV (V⊗M) ◦ (id⊗ RMV ) ◦ (id⊗ RV M )

= R(V⊗M)V ◦ (RMV ⊗ id) ◦ RV (M⊗V ) ◦ (id⊗ RV M ),

put X = Y = V and Z = M in the middle rectangle of (2.4) to obtain that this

= R(V⊗M)V ◦ (RMV ⊗ id) ◦ (RV M ⊗ id) ◦ RV (V⊗M),

set X = M ⊗ V , X ′ = V ⊗M , Y = Y ′ = V , f = RMV and g = id in (2.1) to get
that this

= (id⊗ RMV ) ◦ R(M⊗V )V ◦ (RV M ⊗ id) ◦ RV (V⊗M),

finally, set X = V ⊗M , X ′ = M ⊗ V , Y = Y ′ = V , f = RV M and g = id in (2.1)
to get that this

= (id⊗ RMV ) ◦ (id⊗ RV M ) ◦ R(V⊗M)V ◦ RV (V⊗M). �

4. sl2-categorifications

We now summarize some of the results of [ChRo] that will be needed later.
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4.1. The affine Hecke algebra. Let q0 ∈ C×. Assume q0 6= 1. The affine Hecke
algebra Hk+1 = Hk+1(q0) is the C-algebra with generators T±1

1 , . . . , T±1
k , X±1

1 , . . . , X±1
k+1

subject to the relations

(Ti + 1)(Ti − q0) = 0,

TiT
−1
i = 1 = T−1

i Ti,

XiX
−1
i = 1 = X−1

i Xi,

TiTj = TjTi, if |i− j| > 1;
TiTi+1Ti = Ti+1TiTi+1,

TiXiTi = q0Xi+1,

TiXj = XjTi, if |i− j| > 1;
TiXiXi+1 = Xi+1XiTi,

XiXj = XjXi.

4.1.1. Proposition. Let a ∈ C, N ∈ Z>0. Then

T1(X2 − a)N − (X1 − a)NT1

=(q0 − 1)X2((X1 − a)N−1 + (X1 − a)N−2(X2 − a) + · · ·+ (X2 − a)N−1).

Proof. If N = 1, then the result is given by:

T1X2 = q−1
0 T 2

1 X1T1 = q−1
0 (q0 − (1− q0)T1)X1T1 = X1T1 + (q0 − 1)X2.

For arbitrary N , proceeding by induction, assume the statement for N − 1. Then

T1(X2 − a)N = (X1 − a)N−1T1(X2 − a) + (q0 − 1)X2((X1 − a)N−2(X2 − a)

+ (X1 − a)N−3(X2 − a)2 + · · ·+ (X2 − a)N−1).

Applying the computation for N = 1, this is

= (X1 − a)N−1((X1 − a)T1 + (q0 − 1)X2)

+ (q0 − 1)X2((X1 − a)N−2(X2 − a)

+ (X1 − a)N−3(X2 − a)2 + · · ·+ (X2 − a)N−1)

= (X1 − a)NT1 + (q0 − 1)X2((X1 − a)N−1

+ (X1 − a)N−2(X2 − a) + · · ·+ (X2 − a)N−1). �

4.2. Let Sk+1 be the symmetric group on k +1 letters. Let ` : Sk+1 → Z≥0 denote
the length function. Let si denote the simple transposition (i, i+1). Given a reduced
expression w = si1 · · · sir for w ∈ Sk+1, put Tw = Tsi1

· · ·Tsir
. The element Tw is

independent of the reduced expression.

4.3. Let Hf
k+1 denote the subalgebra of Hk+1 generated by the Ti. Define

1 : Hf
k+1 → C, Ti 7→ q, and sgn: Hf

k+1 → C, Ti 7→ −1.

For τ ∈ {1, sgn}, put cτ
k+1 =

∑
w∈Sn

q−`(w)τ(Tw)Tw.

4.4. sl2. Let sl2 be the Lie algebra of 2× 2 traceless matrices. It has a basis given
by

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
and h = ef − fe =

(
1 0
0 −1

)
.
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Set

s = exp(−f) exp(e) exp(−f) =
(

0 1
−1 0

)
,

s−1 = exp(f) exp(−e) exp(f) =
(

0 −1
1 0

)
.

Let U be a direct sum (possibly infinite) of finite dimensional sl2-modules. Then
the operator s is well defined on U . If V and W are sl2 modules then so is V ⊗W
via

x(v ⊗ w) = xv ⊗ w + v ⊗ xw, x ∈ sl2, v ∈ V,w ∈ W.

4.5. Let A be an abelian category with the property that every object of A is a
successive extension of finitely many simple objects. Assume that the Hom groups
in A are in fact C-vector spaces and that composition is bilinear with respect to this
structure (i.e., A is enriched over C). Further, assume that the endomorphism ring
of a simple object is C. Write K0(A) for the Grothendieck group of A. By definition
K0(A) is generated by symbols [A], A ∈ A and relations [A] − [B] + [C] = 0, for
every exact sequence 0 → A → B → C → 0 in A.

4.6. Write Hob(A) for the homotopy category of bounded complexes in A and
Db(A) for the bounded derived category of A. The Grothendieck group K0(Db(A))
is generated by symbols [A], A ∈ Db(A) and relations [A] − [B] + [C], for every
distinguished triangle A → B → C  . The map K0(Db(A)) → K0(A) given
by [A] 7→

∑
i[H

i(A)], where H•(A) denotes the cohomology of the complex A,
is an isomorphism. The inverse is given by the map induced by the embedding
A ↪→ Db(A). We identify K0(Db(A)) with K0(A) via this isomorphism.

4.7. Adjunctions. An adjunction (E,F ) is the data of functors E : A → B,
F : B → A and morphisms η : idA → FE, ε : EF → idB, such that the compo-
sitions

F
η1F

// FEF
1F ε

// F and E
1Eη

// EFE
ε1E

// E

are equal to the identity.

4.7.1. Remark. If A = B, then the adjunction (E,F ) is precisely the data of a left
dual (=left adjoint) E to the functor F in the monoidal category of endo-functors
of A.

4.8. Weak sl2-categorification. A weak sl2-categorification is the data of an ad-
junction (E,F ) of exact endo-functors of A such that

• the action of e = [E] and f = [F ] on V = Q⊗K0(A) gives a locally finite
sl2-representation;

• the classes of simple objects are weight vectors;
• F is isomorphic to a left adjoint of E.

Denote by ε : EF → id and η : id → FE the (fixed) counit and unit of the adjunc-
tion (E,F ).

4.8.1. Proposition. [ChRo, Prop. 5.5]Fix a weak sl2-categorification (E,F ) on A.
Let m ∈ Z and let Vm denote the m-weight space of K0(A) (viewed as a sl2-module).
Let Am denote the full subcategory of A consisting of objects whose class is in Vm.
Then, A =

⊕
m∈Z Am. In particular, the class of an indecomposable object of A is

a weight vector.
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4.9. sl2-categorification. An sl2-categorification is a weak sl2-categorification with
the extra data of q0 ∈ C× and a ∈ C with a 6= 0 if q0 6= 1, and of X ∈ End(E) and
T ∈ End(E2) such that

• (1ET ) ◦ (T1E) ◦ (1ET ) = (T1E) ◦ (1ET ) ◦ (T1E);
• (T + 1E2) ◦ (T − q01E2) = 0;

• T ◦ (1EX) ◦ T =

{
q0X1E if q0 6= 1,

X1E − T if q0 = 1;
• X − a is locally nilpotent;

where for a functor G, the symbol 1G denotes the identity transformation of G.

4.10. Given an sl2-categorification, define a morphism γn : Hk → End(Ek) by

Ti 7→ 1Ek−i−1T1Ei−1 and Xi 7→ 1En−iX1Ei−1 .

Let τ ∈ {1, sgn}. Put E(τ,k) = Ekcτ
k, the image of cτ

k : En → En.

4.11. Derived equivalences. Let m ∈ Z. Consider the complex of functors

Θm : Comp(A−m) → Comp(Am),

constructed as follows: denote by (Θm)−r the restriction of E(sgn,m+r)F (1,r) to A−m

for r,−m + r ≥ 0. Put (Θλ)−r = 0 otherwise. The map

1Em+r−1ε1F r−1 : Em+r−1EFF r−1 → Em+r−1F r−1

restricts to a map d−r : E(sgn,m+r)F (1,r) → E(sgn,m+r−1)F (1,r−1). Put

Θλ = · · · → (Θm)−i d−i

−→ (Θm)−i+1 → · · · .

Then Θλ is a complex [ChRo, Lemma 6.1]. Let Θ =
⊕

m∈Z Θm.

4.11.1. Theorem. [ChRo, Thm. 6.4]The complex Θ induces a self-equivalence of
Hob(A) and of Db(A) and induces, by restriction, equivalences Hob(A−m) ∼−→
Hob(Am) and Db(A−m) ∼−→ Db(Am). Furthermore, the map induced by Θ on
K0(A) coincides with the reflection s on K0(A) (viewed as an sl2-module).

5. Quantum gln

5.1. Let gln denote the Lie algebra of n × n matrices. Let h denote the Lie sub-
algebra of gln consisting of diagonal matrices and let hi be the matrix with 1 in
the ith diagonal entry and 0 elsewhere. Let h∗ = HomC(h,C). Define εi ∈ h∗ by
〈εi, hj〉 = δij . The trace form (·|·) on gln is given by (x|y) = tr(xy), where tr is the
ordinary matrix trace. This form is symmetric, ad-invariant and non-degenerate.

5.2. Let n be the Lie subalgebra of gln consisting of strictly upper triangular
matrices. By definition, the set of positive roots R+ is the set of the eigenvalues of
h acting on n via the adjoint action. Thus, R+ = {εi − εj | 1 ≤ i < j ≤ n}. The
restriction of the trace form to h is non-degenerate. Hence, we have an isomorphism
h

∼−→ h∗ given by h 7→ (·|h). This induces a non-degenerate form, also denoted (·|·),
on h∗. This form is given by (εi|εj) = δij .

5.3. The weight lattice P is P = {λ1ε1 + · · ·+ λnεn |λ1, . . . , λn ∈ Z}. The cone of
dominant weights P+ is

P+ = {λ1ε1 + · · ·+ λnεn |λ1 ≥ λ2 ≥ · · · ≥ λn, λ1, . . . , λn ∈ Z}.

5.4. The Weyl group. The Weyl group W0 (= the symmetric group Sn in the
case of gln) acts on h∗ by permuting ε1, . . . , εn. Set ρ =

∑n−1
i=1 (n − i)εi. The dot

action of W0 on h∗ is given by w · λ = w(λ + ρ)− ρ, w ∈ W0, λ ∈ h∗.
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5.5. The algebra U ′
q = U ′

q(gln) is the Q[q, q−1] algebra with generators E1, . . . , En−1,
K±1

1 , . . . ,K±1
n−1, L±1

1 , . . . , L±1
n , such that L1L2 · · ·Ln is a central element, and sub-

ject to the following relations:

LiEj = q(εj−εj+1|εi)EjLi,

LiFj = q−(εj−εj+1|εi)FjLi,

LiL
−1
i = 1 = L−1

i Li,

KiK
−1
i = 1 = K−1

i Ki,

Ki = LiL
−1
i+1,

EiFj = FjEi if |i− j| > 1;

EiFi = FiEi +
Ki −K−1

i

q − q−1
,

E2
i Ei±1 − (q + q−1)EiEi±1Ei + Ei±1E

2
i = 0,

F 2
i Fi±1 − (q + q−1)FiFi±1Fi + Fi±1F

2
i = 0.

5.6. Hopf algebra structure. The algebra U ′
q is a Hopf-algebra with coproduct

∆, antipode S and counit ε, given by

∆(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, ∆(Fi) = Fi ⊗K−1
i + 1⊗ Fi, ∆(Li) = Li ⊗ Li;

S(Ei) = −K−1
i Ei, S(Fi) = −FiKi, S(Li) = L−1

i ;

ε(E) = ε(F ) = 0, ε(Li) = 1.

5.7. The trivial representation. Let 1 denote the Uq-module defined by

1 = Uq/ ker(ε : U ′
q → C).

Further, for U ′
q-modules X, Y , endow X ⊗Y with the structure of a U ′

q-module via
the coproduct. This endows the category of U ′

q-modules with a monoidal structure.

5.8. Quantum gln. Denote by Uq the Z[q, q−1]-Hopf subalgebra of U ′
q generated

by the divided powers

E
(m)
i =

Em
i

[m]!
, F

(m)
i =

Fm
i

[m]!
, m ∈ Z≥0,

together with

L±1
i and

[
Ki; c
m

]
=

m∏
j=1

Kiq
(c−j+1) −K−1q−(c−j+1)

qj − q−j
, m ∈ Z≥0, c ∈ Z.

Let U+
q denote the subalgebra of Uq generated by the E

(m)
i and denote by U−

q

the subalgebra of Uq generated by the F
(m)
i . Let U0

q denote the subalgebra of
Uq generated by the L±1

i and the
[
Ki;c
m

]
. Then Uq has the so called triangular

decomposition Uq = U−
q U0

q U+
q .

5.9. Duals. Let V be a Uq-module, γ an anti-endomorphism of Uq. Then we may
give HomC(V,1) the structure of a Uq-module via

x · f = 〈f, γ(x)−〉, x ∈ Uq, f ∈ HomC(V,C).

If γ = S, the antipode, then the resulting module is denote V ∗. Taking γ = S−1,
the resulting module is denoted V ~.
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5.10. Assume V is finite dimensional. Define maps

εV : V ∗ ⊗ V → 1, f ⊗ v 7→ 〈f, v〉; ηV : 1→ V ⊗ V ∗, 1 7→
∑

i

vi ⊗ v∗i ,

where {vi}i and {v∗i }i are dual bases of V and V ∗ respectively. These maps are Uq-
module homomorphisms. It is evident that they satisfy (2.6) and (2.7). Similarly,
define

ε′V : V ⊗ V ~ → 1, v ⊗ f 7→ 〈f, v〉; η′V : 1→ V ~ ⊗ V, 1 7→
∑

i

v∗i ⊗ vi.

These maps are also Uq-module homomorphisms and this data satisfies the prop-
erties required for right duals. Thus:

5.10.1. Proposition. If V is a finite dimensional module then V ∗ is a left dual to
V and V ~ is a right dual to V .

5.11. Set Kρ = Ln−1
1 Ln−2

2 · · ·Ln−1, then it follows from the defining relations for
Uq that K2

ρS(x) = S−1(x)K2
ρ .

5.11.1. Proposition. Let V be a finite dimensional Uq-module. The map

ϕV : V ∗ → V ~, f 7→ 〈f,K−2
ρ −〉

is a Uq-module isomorphism.

Proof. Let f ∈ V ∗ and let x ∈ Uq, then

ϕV (xf) = 〈xf, K−2
ρ −〉 = 〈f, S(x)K−2

ρ −〉 = 〈f,K−2
ρ S−1(x)−〉 = xϕV (f).

Thus, ϕ is a Uq-module homomorphism. That it is an isomorphism is clear. �

5.12. Weight spaces. Let M be a Uq-module and let λ ∈ P . The weight space
Mλ is

Mλ =
{

v ∈ M |Liv = q(λ|εi)v,

[
Ki; 0
m

]
v =

[
(λ|εi)

m

]
v, for all i and m

}
.

The direct sum
⊕

λ∈P Mλ is a Uq-submodule of M . It follows from the defining
relations that E

(m)
i Mλ ⊆ Mλ+m(εi−εi+1) and that F

(m)
i Mλ ⊆ Mλ−m(εi−εi+1). A

highest weight vector of weight λ is a vector v ∈ Mλ such that E
(m)
i v = 0 for all

i and m. A module M is a highest weight module if it is generated by a highest
weight vector.

5.13. Category O. Let O be the full subcategory of Uq-modules M satisfying the
following properties:

• For each v ∈ M , the subspace U+
q v ⊂ M is finite dimensional;

• For each λ ∈ P the subspace Mλ is finite dimensional and M =
⊕

λ∈P Mλ;
• M is finitely generated as a Uq-module.

Let M ∈ O, then M has a finite filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mk = M such
that each Mi/Mi−1 is a highest weight module.

5.14. Verma modules. Let λ ∈ P and let Jλ be the left ideal of Uq generated by

E
(m)
i , Li − q(λ|εi),

[
Ki; 0
m

]
−

[
(λ|εi − εi+1)

m

]
,

for all i and m. The Verma module M(λ) is

M(λ) = Uq/Jλ.

The module M(λ) is a highest weight module of weight λ. In particular, M(λ) ∈ O.
The Verma module M(λ) has a unique simple quotient denoted L(λ). If λ ∈ P+
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then L(λ) is finite dimensional. The classes [M(λ)], λ ∈ P constitute a basis of
K0(O).

5.15. R-matrices. Grade the subalgebras U+
q and U−

q via ν = (ν1, . . . , νn) ∈ Zn
≥0

as follows: the subspace U+
ν is generated by all the products of E

(mij)
i s in which for

fixed i,
∑

j mij = νi. Define U−
ν similarly. Let V,W ∈ O, define an invertible linear

map Π: V ⊗W → V ⊗W by v ⊗ w 7→ q−(λ|µ)w ⊗ v, for v ∈ Vλ and w ∈ Wµ.

5.15.1. Proposition ([Dr, Prop. 4.1], [Lu, Thm. 32.1.5], [Ji]). There exists a unique
family of elements Pν ∈ U−

ν ⊗ U+
ν , ν ∈ Zn

≥0, such that P0 = 1⊗ 1 and the map

RV W : V ⊗W → W ⊗ V, v ⊗ w 7→ Π−1

 ∑
ν∈Zn

≥0

Pν(v ⊗ w)

 ,

is an isomorphism for every V,W ∈ O.

5.15.2. Remarks.
(i) Our (·|·) is f in [Lu] and our RV W is fR−1

WV in [Lu].
(ii) For V ∈ O and v ∈ V , E

(m)
i v = 0 for large enough m. Thus, even though

the sum
∑

ν∈Zn
≥0

Pν is infinite, this is a well defined operator on V ⊗−.

5.16. Let f : V → V ′ and g : W → W ′ in O. Then it is clear that the diagram

V ⊗W

RV W
��

f⊗g
// V ′ ⊗W ′

RV ′W ′
��

W ⊗ V
g⊗f

// W ′ ⊗ V ′

commutes. Moreover:

5.16.1. Proposition. [Lu, Prop. 32.2.4]The following diagrams commute for all
U, V,W ∈ O

U ⊗ V ⊗W
id⊗RV W

vv

R(U⊗V )W

((

U ⊗W ⊗ V
RUW⊗id

// W ⊗ U ⊗ V

U ⊗ V ⊗W
RUV ⊗id

vv

RU(V⊗W )

((

V ⊗ U ⊗W
id⊗RUW

// V ⊗W ⊗ U.

5.17. The ribbon element. Define a linear map

ϕ : Uq ⊗ Uq → Uq, x⊗ y 7→ S(y)x,

where S is the antipode. Let M ∈ O. Let Pν , ν ∈ Zn
≥0 be as in Prop. 5.15.1. Define

θM : M → M, v 7→ q(λ|λ+2ρ)
∑

ν∈Zn
≥0

ϕ(Pν)v.

This is a well defined linear operator and by [Lu, Prop. 6.1.7], θM is a Uq-module
automorphism. Now suppose M is generated by a highest weight vector v+

λ ∈ Mλ.
Then by definition of the Pν ,

θM (v+
λ ) = q(λ|λ+2ρ)v+

λ + terms of lower weight.

As EndUq (M) = C, it follows that θM is multiplication by q(λ|λ+2ρ).
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5.17.1. Proposition. Let V,W ∈ O. Then θV⊗W ◦ (θV ⊗ θW )−1 = RWV ◦ RV W .

Proof. The operator Π−1 ◦
∑

ν∈Zn
≥0

Pν may be interpreted as an element of an
appropriate completion of Uq ⊗ Uq (see [Lu, §4.1]). Now the proof of our assertion
is exactly the same as that of [Dr, Prop. 3.2]. �

6. sl2-categorifications and derived equivalences for generic q

In this section we assume q is not a root of 1. Let V = L(ε1). Then V has weights
ε1, . . . , εn and V ∗ has weights −ε1, . . . ,−εn. It is clear that V, V ∗ ∈ O.

6.0.2. Proposition. Let λ ∈ h∗. Then V ⊗ M(λ) has a filtration with quotients
isomorphic to M(λ + εi), i = 1, . . . , n. Similarly, V ∗ ⊗M(λ) has a filtration with
quotients isomorphic to M(λ− εi), i = 1, . . . , n.

Proof. This is a special case of [APW, Prop. 2.16]. �

6.0.3. Corollary. The category O is stable under the functors V ⊗− and V ∗ ⊗−.

6.1. Let M ∈ O. Let

YM (V ⊗M) = RMV ◦ RV M (V ⊗M).

Define pri(V ⊗ M) to be the generalized eigenspace of of YM with eigenvalue qi.
That is,

pri(V ⊗M) = lim−→
m

ker((YM − qi)m : V ⊗M → V ⊗M).

By definition, YM = RMV RV M = θV⊗M ◦ (θV ⊗ θM )−1. As each object of O has
a finite filtration by highest weight modules and θ acts by scalar multiplication on
highest weight modules, the direct limit in the definition above must stabilize after
finitely many terms.

6.2. sl2-categorification. For each a ∈ Z, define a functor

Ea : O → O, M 7→ pr2a(V ⊗M).

As θV is multiplication by q(ε1|ε1+2ρ) = q2n−1, we infer that

Ea =
⊕
j∈Z

pr2a+j+2n−1 ◦ (V ⊗−) ◦ prj .

Furthermore, if λ = λ1ε1 + · · ·+ λnεn, then

(λ + εi|λ + εi + 2ρ)− (λ|λ + 2ρ)− (ε1|ε1 + 2ρ) = 2(λi − i + 2). (6.1)

Since θM(λ) = q(λ|λ+2ρ), it follows that V ⊗M =
⊕

a∈Z Ea(M) for all M ∈ O.

6.3. Define

Fa =
⊕
j∈Z

prj ◦ (V ∗ ⊗−) ◦ pr2a+j+2n−1.

Since prj is left and right adjoint to itself, it follows that Fa is left and right adjoint
to Ea (see Prop. 5.11.1).
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6.4. Let λ = λ1ε1 + · · ·+ λnεn and µ = µ1ε1 + · · ·+ εn be in P . Write λ →a µ if
there exists j such that λj − j + 1 = a − 1, µj − j + 1 = a and λi = µi for i 6= j.
Then (6.1) along with Prop. 6.0.2 implies that

[EaM(λ)] =
∑

λ→aµ

[M(µ)], [FaM(λ)] =
∑

µ→aλ

[M(µ)]

in K0(O). Hence

[EaFaM(λ)]− [FaEaM(λ)] = cλ,a[M(λ)],

where
cλ,a = #{i |λi − i + 1 = a} −#{i |λi − i = a}.

6.4.1. Proposition. The functors Ea, Fa define a weak sl2-categorification on O.

Proof. As the classes of Verma modules are a basis for K0(O), in view of the above
discussion, all that remains to be checked is that the classes of simple modules are
weight vectors in K0(O). Let [L(λ)] =

∑
µ∈P aλ,µ[M(µ)]. Then we infer from the

Linkage Principle [CP, Thm. 9.1.8] that if aλ,µ 6= 0, then µ ∈ W0 ·λ. By reducing to
the case of simple reflections, we deduce that cλ,a = cw·λ,a. Thus, [L(λ)] has weight
cλ,a. �

6.4.2. Remark. The Linkage Principle, as stated in [CP, Thm. 9.1.8], applies only
to the quantum group associated to a simple Lie algebra. However, it remains valid
for Uq(gln). One way of seeing this is by using the embedding Uq(sln) ↪→ Uq(gln)
(see [CP, §12.C]).

6.4.3. Proposition. The morphism (RV V − q) ◦ (RV V + q−1) : V ⊗ V → V ⊗ V is
zero.

Proof. The module V ⊗ V decomposes as V ⊗ V = L(2ε) ⊕ L(ε1 + ε2). Since
R2

V V = θV⊗V (θV ⊗ θV )−1,

(2ε1|2ε1 + 2ρ)− 2(ε1|ε1 + 2ρ) = 2 and (ε1 + ε2|2ε1 + 2ρ) = −2,

we infer that R2
V V − q2 is zero on the L(2ε) component of V ⊗ V and R2

V V − q−2

is zero on the L(ε1 + ε2) component of V ⊗ V . Using the specialization q → 1 and
arguing as in [LR, Prop. 4.4], we deduce that RV V is multiplication by q on the
L(2ε1) component, and is multiplication by −q−1 on the L(ε1 + ε2) component of
V ⊗ V . �

6.4.4. Proposition. Let FV , σi, Yi be as in §3.1.1 with V = L(ε1). Define

Φ: Hk+1 → End(F k+1
V ),

Ti 7→ qσi,

Xi 7→ Yi,

q0 7→ q2.

Then Φ defines a representation of Hk+1 on F k+1
V .

Proof. Immediate from Prop. 3.1.1, Prop. 5.16.1, Prop. 5.17.1 and Prop. 6.4.3. �

6.5. Let FV be as in §3.1.1 with V = L(ε1). Then there is an action of H2 on F 2
V .

Let M ∈ O, it follows from the definitions that

E2
a(M) = {v ∈ V ⊗ V ⊗M | (X2 − a)N (X1 − a)Nv = 0, for sufficiently large N}.

Combining this with Prop. 4.1.1 we deduce that the action of H2 on F 2
V restricts

to an action of H2 on E2
a. Hence:

6.5.1. Proposition. The functors E = Ea and F = Fa along with the morphisms
T = T1 and X = X1 are an sl2-categorification.
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6.6. Let E = Ea and F = Fa. For m ∈ Z, let Om denote the subcategory of O

consisting of those modules V such that [EF (V )]− [FE(V )] = m[V ] in K0(O). Let
Θ be as in §4.11. Then Thm. 4.11.1 gives:

6.6.1. Corollary. The complex of functors Θ induces a self-equivalence of Hob(O)
and of Db(O). By restriction Θ induces equivalences Hob(O−m) ∼−→ Hob(Om) and
Db(O−m) ∼−→ Db(Om). Furthermore, the operator on K0(O) induced by Θ coincides
with the reflection s on K0(O) (viewed as an sl2-module).

6.7. Let M ∈ O be indecomposable. By the Linkage Principle [CP, Thm. 9.1.8], if
L(λ) and L(µ) are composition factors of M , then λ and µ are in the same dot-orbit
of W0. For λ ∈ P , let Oλ be the Serre subcategory of O generated by simples of
the form L(w · λ), w ∈ W0. The following result is proved along the same lines as
[ChRo, Thm. 7.24].

6.7.1. Theorem. Let λ, µ ∈ P have the same stabilizer under the dot action of W0.
Then there are equivalences

Hob(Oλ) ∼−→ Hob(Oµ) and Db(Oλ) ∼−→ Db(Oµ)

that induce the map

[M(w · λ)] 7→ [M(w · µ)], w ∈ W0,

at the level of Grothendieck groups.

Proof. For i ∈ Z, define ti : Z → Z by

ti(m) =


m + 1 if m = i− 1,

m− 1 if m = i,

m otherwise,

and define d : Z → Z by d(m) = m + 1. Let T be the group generated by d and
ti, i ∈ Z. Identify P with Zn via λ1ε1 + · · ·+ λnεn 7→ (λ1, . . . , λn). This defines an
action of T on P via the diagonal action of T on Zn. It is clear that the regular
action of W0 on P commutes with the action of T . We claim that two elements
ν, ν′ ∈ P have the same stabilizer in W0 (regular action) if and only if they are
in the same T -orbit. Indeed, both conditions are equivalent to the following: if
ν = ν1ε1 + · · ·+ νnεn and ν′ = ν′1ε1 + · · ·+ ν′nεn, then for all i and j, νi − νj = 0
if and only if ν′i − ν′j = 0.

Thus, if λ and µ have the same W0 stabilizer under the dot action, then t(λ+ρ) =
µ + ρ, for some some t ∈ T . Without loss of generality, we may assume that t = d
or t = ta for some a ∈ Z. If t = d, then consider the module V ′ = L(ε1 + · · ·+ εn).
The module V ′ is one dimensional and it follows that the functor V ′ ⊗− : O → O

is an equivalence. Moreover, the induced map at the level of K0(O) is precisely
[M(w · λ)] 7→ [M(w · µ)]. If t = ta, then let Θa be the complex of functors obtained
from the sl2 categorification E = Ea and F = Fa. Let s denote the reflection that Θa

induces on K0(O) (viewed as an sl2-module). Define an sl2-module Ua =
⊕

i∈Z ui

as follows:

eua−1 = ua, fua = ua−1, eui = 0 if i 6= a− 1, fui = 0 if i 6= a.

That is, Ua is the direct sum of the defining representation of sl2 and infinitely
many copies of the trivial module. Thus, on Ua the reflection s is given by

sua−1 = ua, sua = −ua−1, sui = ui if i 6= a, a− 1.

Thus, on the tensor product U⊗n
a , we have suν = (−1)h−(ν)utaν , where uν =

uν1 ⊗ · · · ⊗ uνn and h−(ν) = #{i | νi = a}. The map

U⊗n
a → K0(O), uν+ρ 7→ [M(ν)],
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is an sl2-module homomorphism. Hence

s[M(ν)] = (−1)h−(ν+ρ)[M(ta(ν + ρ)− ρ)].

Note that

h−(λ + ρ) = h−(w(λ + ρ)) = h−(w · λ + ρ),

for all w ∈ W0. Thus, if we let h− = h−(λ + ρ), then Θa[h−] restricts to an
equivalence Db(Oλ) ∼−→ Db(Oµ) that induces the map [M(w · λ)] 7→ [M(w · µ)],
w ∈ W0, at the level of Grothendieck groups. �

6.7.2. Remark. Combining the various sl2-categorifications (Ea, Fa), a ∈ Z, gives
a categorification of the affine Lie algebra ŝl∞ in the sense of [Ro], see [W, §5] and
[BK]. Also cf. [LLT].

7. sl2-categorifications and derived equivalences for q a root of 1

In this section q will be an `th root of unity, ` 6= 2. We will allow ` = ∞, this
corresponds to the case of generic q. However, since the categories we will now
construct sl2-categorifications on are different from O, the results of this section do
not subsume those of the previous one.

7.1. Let C be the full subcategory of O consisting of finite dimensional modules.
Let V ∈ C. Then it follows from [APW, Lemma 1.13] that if Vλ 6= 0 then Vw(λ) 6= 0,
for all w ∈ W0. The following result is classical.

7.1.1. Lemma. Let λ ∈ P and let M(λ) be the corresponding Verma module. Let
Σ be the set of Uq-submodules K of M(λ) such that M(λ)/K is finite dimensional.
Then Σ has a unique minimal element.

Proof. All weights of M(λ) belong to π = λ − Z≥0R
+. Let π′ = W0(P+ ∩ π)

and let N(λ) denote the Uq-module generated by
⊕

µ6∈π′ M(λ)µ. If K ∈ Σ, then
N(λ) ⊆ K. Furthermore, the set π′ is finite and the weight spaces of M(λ) are
finite dimensional, thus M(λ)/N(λ) ∈ Σ. Hence, N(λ) is the required minimal
element. �

7.2. Weyl modules. Let N(λ) ⊆ M(λ) be the minimal element of the lemma
above. The Weyl module ∆(λ) is defined by

∆(λ) = M(λ)/N(λ).

By construction, ∆(λ) = 0 unless λ ∈ P+. In fact, ∆(λ) 6= 0 if and only if λ ∈ P+.
The module ∆(λ) is a highest weight module. Further, any other highest weight
module with highest weight λ is necessarily isomorphic to a quotient of ∆(λ). The
module ∆(λ) has a unique simple quotient, denoted Lq(λ). Every simple module in
C is isomorphic to Lq(λ) for some λ ∈ P+.

7.3. Affine Weyl group and the Linkage Principle. Let si ∈ W0 denote the
transposition (εi, εi+1). The affine Weyl group is generated by the affine reflections
si,m, i = 1, . . . , n − 1, m ∈ Z, where si,m(λ) = si(λ) + m`(εi − εi+1), λ ∈ h∗. The
dot action of W` on h∗ is defined as w · λ = w(λ + ρ) − ρ, w ∈ W`, λ ∈ h∗. The
following result is the Linkage Principle for q a root of unity.

7.3.1. Proposition. [APW, Thm. 8.1]Let λ, µ ∈ P+. If L(µ) occurs as a composi-
tion factor of ∆(λ), then µ ∈ W` · λ.
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7.4. Let V = ∆(ε1). Then V has weights ε1, . . . , εn and V ∗ has weights−ε1, . . . ,−εn.
It is clear that C is stable under tensoring with V and V ∗.

7.4.1. Proposition. Let λ ∈ P+. Then V ⊗ ∆(λ) has a filtrations with quotients
isomorphic to ∆(λ + εi), i = 1, . . . , n. Similarly, V ∗ ⊗ ∆(λ) has a filtration with
quotients isomorphic to ∆(λ− εi), i = 1, . . . , n.

Proof. This is a special case of [APW, Prop. 2.16]. �

7.4.2. Remark. It is understood in the Proposition above that ∆(µ) = 0 if µ 6∈ P+.

7.5. sl2-categorification. Let M ∈ C. Let

YM (V ⊗M) = RMV ⊗ RV M (V ⊗M).

Let pri(V ⊗M) be the generalized eigenspace of YM with eigenvalue qi. For each
a ∈ Z/`Z, define

Ea : C → C, M 7→ pr2a(V ⊗M).

As in §6, Ea =
⊕

j∈Z/`Z pr2a+j+2n−1 ◦ (V ⊗−) ◦ prj , and the functor

Fa =
⊕

j∈Z/`Z

prj ◦ (V ∗ ⊗−) ◦ pr2a+j+2n−1

is left and right adjoint to Ea.

7.6. Let λ = λ1ε1 + · · ·+ εn and µ = µ1ε1 + · · ·+ µnεn be in P+. Write λ →a µ
if there exists j such that λj − j + 1 ≡ a − 1 mod `, µj − j + 1 ≡ a mod ` and
λi ≡ µi mod ` for i 6= j. Then

[Ea∆(λ)] =
∑

λ→aµ

[∆(µ)], [Fa∆(λ)] =
∑

µ→aλ

[∆(µ)],

in K0(C). Hence

[EaFa∆(λ)]− [FaEa∆(λ)] = cλ,a[∆(λ)],

where

cλ,a = #{i |λi − i + 1 ≡ a mod ` and λ + εi ∈ P+}
−#{i |λi − i ≡ a mod ` and λ− εi ∈ P+}.

As in §6, we have

7.6.1. Proposition. The functors Ea and Fa define an sl2-categorification.

Let Θ be as in §4.11, then we also have:

7.6.2. Corollary (cf. [Ric, Prop. 2.2]). The complex of functors Θ induces a self-
equivalence of Hob(C) and of Db(C). By restriction Θ induces equivalences

Hob(C−m) ∼−→ Hob(Cm) and Db(C−m) ∼−→ Db(Cm).

Furthermore, the operator on K0(C) induced by Θ coincides with the reflection s on
K0(C) (viewed as an sl2-module).

7.6.3. Remark. Combining the various sl2-categorifications (Ea, Fa), a ∈ Z/`Z,
gives a categorification of the affine Lie algebra ŝl` in the sense of [Ro], see [W, §5]
and [BK]. Also cf. [LLT].
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