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1. Introduction. Let G∨ be a reductive algebraic group defined over R. The local
Langlands correspondence [L] describes the set of equivalence classes of irreducible
admissible representations of G∨(R) in terms of the Weil-Deligne group and the
complex dual group G. Roughly, it partitions the set of irreducible representations
into finite sets (L-packets) and then describes each L-packet. Since Langlands’
original work, this has been refined in several directions. Most relevant to this
document is the work of Adams-Barbasch-Vogan [ABV].

The key construction in [ABV] is that of a variety (the parameter space) on
which G acts with finitely many orbits; each L-packet is re-interpreted as an orbit,
and representations in the L-packet as the equivariant local systems supported on
it. Adams-Barbasch-Vogan further demonstrate that the parameter space encodes
significant character level information.

In [So] W. Soergel has outlined a conjectural relationship between the geometric
and representation theoretic categories appearing in [ABV]. This relationship,
roughly a type of Koszul duality, yields a conceptual explanation for the phe-
nomena observed in [ABV].1 The current note was born in an attempt to settle
Conjectures 4.2.2, 4.2.3, 4.2.6 in [So], and Soergel’s ‘Equivariant Formality’ con-
jecture (implicit in [So]; see §6 and [Lun, §0.2]). These conjectures describe the
structure of the geometric categories appearing in [ABV]; the current document
has little to say about Soergel’s Basic Conjecture (relating the geometric categories
to representation theory).

We ‘almost’ succeed (see §6). Soergel’s conjectures are formulated in graded
versions of our categories (in the sense of [So, §4]). These ‘graded representation
theories’ are not constructed here because of a rather frustrating reason: we use
the language of Hodge modules, and the category of Hodge modules is too large
for the purposes of graded representation theory (see §6 and footnote 3).

The main result is Theorem 4.4 describing the Hodge structure on equivariant
Ext• between simple perverse sheaves on the parameter space.2 It yields a host of
ancillary results which are of independent interest: Corollary 4.5 and 4.6 (‘parity
vanishing’); Theorem 5.5 and Corollary 5.6 (‘positivity’ of a Hecke algebra module).
An informal discussion regarding Soergel’s graded categories is contained in §6.

1 The localization theorem of Beilinson-Bernstein also establishes a relationship between representa-
tion theory and geometry. However, Soergel’s approach is very different: localization leads to geometry
on the group itself; Soergel’s approach results in geometry on the dual group.

2 The parameter space is never explicitly mentioned. The translation between the symmetric
varieties G/K appearing below and the parameter space is provided by [ABV, Proposition 6.24]. The
parameter space is essentially a disjoint union of varieties of the form G/K.
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2. Conventions. Throughout, ‘variety’ = ‘separated reduced scheme of finite type
over Spec(C)’. A fibration will mean a morphism of varieties which is locally trivial
(on the base) in the ètale sense. Constructible sheaves, cohomology, etc. will always
be with R or C coefficients, and with respect to the complex analytic site associated
to a variety.

Given an algebraic group G, we write G0 for its identity component. Suppose
G acts on X. Then we write Gx for the isotropy group of a point x ∈ X. Given a
principle G-fibration E→ B, we write E×G X → B for the associated fibration.4

We write DG(X) for the G-equivariant derived category (in the sense of [BL]),
and PervG(X) ⊆ DG(X) for the abelian subcategory of equivariant perverse
sheaves on X. Perverse cohomology is denoted by pH∗. Change of group functors
(restriction, induction equivalence, quotient equivalence, etc.) will often be omitted
from the notation. All functors between derived categories will be tacitly de-
rived. Both the functor of G-equivariant cohomology as well as the G-equivariant
cohomology ring of a point will be denoted by H∗G.

3. B\G/K. Let G be a connected reductive group, θ : G → G a non-trivial alge-
braic involution, T a θ-stable maximal torus, and B ⊇ T a θ-stable Borel containing
it (such a pair (B, T) always exists, see [St, §7]). Write W for the Weyl group. Let
K = Gθ denote the fixed point subgroup. Then

(i) K is reductive (but not necessarily connected, see [V, §1]);
(ii) |B\G/K| < ∞ (a convenient reference is [MS, §6]);

(iii) K-orbits in G/B are affinely embedded (see [M, Ch. H, Proposition 1]);
(iv) for each x ∈ G/B, the component group Kx/K0

x has exponent 2 [V,
Proposition 7].

Our primary concern is the category DB×K(G), for the B× K-action given by
(b, k) · g = bgk−1. The evident identification of B× K-orbits in G, with B-orbits in
G/K, and with K-orbits in G/B, respects closure relations. There are corresponding
identifications: DB(G/K) = DB×K(G) = DK(G/B). These identifications will be
used without further comment.

Let s ∈W be a simple reflection, P ⊇ B the corresponding minimal parabolic,
and v a B-orbit in G/K. Then the subvariety P · v ⊆ G/K contains a unique open
dense B-orbit s ? v. Let ≤ denote the closure order on orbits, i.e., v ≤ w if and only
if v is contained in the closure w.

3 In January, 2010, W. Soergel explained to me: “In a way, there should be a better category than
what we work with, sort of much more motivic, where these problems disappear. Think about Grothendieck’s
conjecture: the action of Frobenius on the ètale cohomology of a smooth projective variety should be semisimple!
So this non-semisimplicity is sort of due to the fact we are not working with motives, but with some rather bad
approximation, I suggest." At my glacial pace it has taken me four years to appreciate this (see §6).

4 Generally, E×G X is only an algebraic space. It is a variety if, for instance, X is quasi-projective
with linearized G-action; or G is connected and X can be equivariantly embedded in a normal variety
(Sumihiro’s Theorem). One of these assumptions will always be satisfied below.
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Theorem 3.1 ([RS, Theorem 4.6]). If w ∈ B\G/K is not closed, then there exists a
simple reflection s ∈W, and v ∈ B\G/K such that v � w and s ? v = w.

Let π : G/B→ G/P be the evident projection. Let x ∈ G/B. Set y = π(x), and
Ls

x = π−1(y). Note: Ls
x ' P1.

(∗)

��

∼
// Ls

x

��

// G/B

π

��

• // {y} // G/P

The K-action induces an isomorphism K×Ky Ls
x
∼−→ K · Ls

x. Thus,

DK(K · Ls
x) = DK(K×Ky Ls

x) = DKy(Ls
x) = DKy(P

1).5

As |B\G/K| < ∞, the image of Ky in Aut(Ls
x) has dimension ≥ 1. Identify P1

with C t {∞}. Modulo conjugation by an element of Aut(Ls
x) ' PGL2, there are

four possibilities for the decomposition of P1 into Ky-orbits:

Case G: P1 (the action is transitive);

Case U: P1 = C t {∞};
•

Case T: P1 = {0} t C∗ t {∞};
•

•
Case N: P1 = {0, ∞} t C∗; both {0} and {∞} are fixed points of K0

y.
•

•........
.
..
..

. . . . . . .

OO

. . . . . . . . .
.
..
..

........

��

We will say that w is of type G, U, T or N relative to s depending on which of
these decompositions actually occurs.

Given an irreducible equivariant local system Vτ on a K-orbit j : w ↪→ G/B, set

Lτ = j!∗Vτ [dτ ], where dτ = dim(w).

5 This is the analogue of the Lie theoretic principle that ‘local phenomena is controlled by SL2’.
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Call Lτ clean if Lτ ' j!Vτ [dτ ]. Call Lτ cuspidal if for each simple reflection s, each
v 6= w with s ? v = w, and each K-equivariant local system Vγ on v, the object Lτ

does not occur as a direct summand of pH∗(π∗π∗Lγ), where π is as in (∗).6

Lemma 3.2 ([MS, Lemma 7.4.1]). Cuspidals are clean.

Proof. As indicated, this is [MS, Lemma 7.4.1]. Regardless, the language employed
in [MS] is a bit different from ours, so we sketch the argument in order to orient
the reader.

Let j : w ↪→ G/B be a K-orbit, and Vτ a local system on w such that Lτ is
cuspidal. Write w for the closure of w. To demonstrate the assertion we need to
show that (j∗Vτ)|v = 0 for each orbit v in w− w.

If s is a simple reflection such that s ? w = w and Ps · w contains an orbit other
than w, then as Lτ is cuspidal, w must be of type T or N relative to s. In the
language of [MS], this means that each such s is ‘of type IIIb or IVb for w’. Let I
be the set consisting of simple reflections s as above and let PI be the parabolic
subgroup of G containing B and corresponding to I. Then in [MS, §7.2.1] it is
shown that PI · w = w.

Now if v is an orbit of codimension 1 in w, then there exists s ∈ I such that
s ? v = w. Inspecting the cases T and N yields the required vanishing in this case.

For arbitrary v, proceed by induction on codimension. Let s ∈ I be such that
s ? v > v. Let π be as in (∗). As Lτ is cuspidal, π∗(j∗Vτ) = 0. Furthermore,
if (j∗Vτ)|v 6= 0, then π∗((j∗Vτ)|v) 6= 0. All of this follows by inspection of the
cases G, U, T, N. Combined these vanishing and non-vanishing statements imply
(j∗Vτ)|v 6= 0 only if (j∗Vτ)|s?v 6= 0. Thus, applying the induction hypothesis yields
the result. �

4. Mixed structures. Given a variety X, write M(X) for the category of R-mixed
Hodge modules on X, and DM(X) for its bounded derived category [Sa]. If a linear
algebraic group acts on X, write DMG(X) for the corresponding mixed equivariant
derived category. When dealing with mixed as well as ordinary categories, objects
in mixed categories will be adorned with an H . Omission of the H will denote the
classical object underlying the mixed structure.

A mixed Hodge structure is called Tate if it is a successive extension of Hodge
structures of type (n, n). A mixed Hodge module AH ∈ M(X) will be called
∗-pointwise Tate if, for each point i : {x} ↪→ X, the stalk H∗(i∗AH) is Tate. Call
AH ∈ DM(X) ∗-pointwise Tate if each pHi(AH) is so. An object of DMG(X) is
∗-pointwise Tate if it is so under the forgetful functor DMG(X)→ DM(X).

Lemma 4.1. Let π be as in (∗). Then π∗π∗ preserves the class of ∗-pointwise Tate objects.

Proof. Use the notation surrounding (∗). Then the assertion reduces to the claim
that if AH ∈ MKy(Ls

x) is ∗-pointwise Tate, then H∗(Ls
x;AH) is Tate.7 This is

immediate from the possible Ky-orbit decompositions G, U, T and N. �

6 The term ‘cuspidal’ has a very specific meaning in representation theory. It is not clear to me
whether the terminology is completely justified in the current geometric setting.

7 The core of this argument is due to R. MacPherson (in a ‘parity vanishing’ context for Schubert
varieties), see [So2000, Lemma 3.2.3].
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Each irreducible B× K-equivariant local system Vτ , on an orbit w, underlies a
unique (up to isomorphism) polarizable variation of Hodge structure of weight
zero. Denote this variation by VH

τ . Taking intermediate extension, we obtain a
pure (equivariant) Hodge module LH

τ of weight dτ = dim(w), i.e.,

LH
τ = j!∗VH

τ [dτ ],

where j : w ↪→ G is the inclusion.

Proposition 4.2. LH
τ is ∗-pointwise Tate.

Proof. Work in G/B. The statement is true for cuspidals, since they are clean
(Lemma 3.2). The general case follows by induction (employing Theorem 3.1) and
Lemma 4.1. �

Proposition 4.3. Let i : v ↪→ G be the inclusion of a B× K-orbit. Then i∗LH
τ is pure.

Proof. Work in G/K. According to [MS, §6.4] (also see the comments at the end of
§1 in [LV]), each B-orbit admits a contracting slice in the sense of [MS, §2.3.2]. This
implies purity (see [MS, §2.3.2] or [KL, Lemma 4.5] or [So89, Proposition 1]). �

Given an algebraic group L acting on a variety X, set

Exti
L(−,−) = HomDL(X)(−,−[i]).

The Hodge modules LH
ν endow each Ext•B×K(Lτ ,Lγ) with a Hodge structure.

Theorem 4.4. Ext•B×K(Lτ ,Lγ) is Tate and pure of weight dγ − dτ .8

Proof. Work in G/K. Filtering Ext•B(Lτ ,Lγ) by the orbit stratification, one sees that
it suffices to argue that Ext•B(i

∗Lτ , i!Lγ)) is pure and Tate for each B-orbit inclusion
i : u ↪→ G/K. Proposition 4.2 and Proposition 4.3 imply that both i∗LH

τ and i!LH
γ

are direct sums of (shifted) one dimensional variations of Hodge structure. As H∗L
is pure and Tate, for any linear algebraic group L (cf. [D, §9.1]), the assertion is
immediate. �

Corollary 4.5. Exti
B×K(Lτ ,Lγ) = 0 unless i = dτ + dγ mod 2.

Corollary 4.6. H∗B×K(G;Lτ) vanishes in either all even or all odd degrees.

Some remarks are in order:
(i) Corollary 4.5 should be compared with [So, Conjecture 4.2.6]; also see §6.

(ii) Corollary 4.6 is essentially contained in [LV]. Lusztig-Vogan work in the
non-equivariant `-adic setting, but the Hecke algebra computations in
[LV] can be used to obtain Corollary 4.6; also see §5. Note that Lusztig-
Vogan rely on explicit calculations with the Hecke algebra and arguments
from representation theory. An argument analogous to [LV], involving
Hecke algebra computations (but no representation theory), can be found
in [MS].

(iii) Let P ⊇ B be a parabolic subgroup. One should be able to obtain similar
results for the analogous P× K-action on G using the technique of [So89].

8 Warning: the non-equivariant analogue of this result is false!
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5. Hecke algebra. Let L ⊆ G be a closed subgroup (we are mainly interested in
L = B or K). Let B× L act on G via (b, l) · g = bgl−1. Define a bifunctor

− ?− : DMB×B(G)× DMB×L(G)→ DMB×L(G),

called convolution, as follows. For M ∈ DMB×B(G), N ∈ DMB×L(G), the object
M�N descends to an object M �̃N ∈ DMB×L(G×B G). Set M ? N = m!(M �̃N),
where m : G×B G → G is the map induced by multiplication. This operation is
associative in the evident sense. As m is projective, convolution adds weights and
commutes with Verdier duality (up to shift and Tate twist).

Taking L = B yields a monoidal structure on DMB×B(G). For each w ∈W, set

Tw = jw!BwB and Cw = (jw!∗BwB[dim(BwB)])[−dim(BwB)],

where jw : BwB ↪→ G is the inclusion, and BwB denotes the trivial (weight 0)
variation of Hodge structure on BwB. The unit for convolution is 1 = Te.

Proposition 5.1. The Tw satisfy the braid relations. That is, if `(vw) = `(v) + `(w),
then Tv ? Tw = Tvw, where ` : W → Z≥0 is the length function.

Proof. Multiplication yields an isomorphism BvB×B BwB ∼−→ BvwB. �

Proposition 5.2. Let s ∈W be a simple reflection, and let π be as in (∗). Then, under the
equivalence DMB×K(G)

∼−→ DMK(G/B), convolution with Cs is identified with π∗π∗.

Proof. Left to the reader (see [So2000, Lemma 3.2.1]). �

Let Hq ⊆ DMB×B(G) be the triangulated subcategory generated by the Cw,
w ∈W, and Tate twists thereof.

Proposition 5.3. Hq is stable under convolution.

Proof. This follows from [So, Proposition 3.4.6]. Alternatively, note

DMB×B(G)
∼−→ DMB(G/B) ∼−→ DMG(G×B G/B) ∼−→ DMG(G/B× G/B).

This puts us in the setting of the previous sections (with group G× G and involu-
tion θ(g1, g2) = (g2, g1)). Now use Lemma 4.1 and Proposition 5.2. �

Corollary 5.4. Each Tw is in Hq.

Proof. In view of Proposition 5.1, it suffices to prove this for each simple reflection
s. In this case we have a distinguished triangle 1[−1]→ Ts → Cs  �

Let Mq ⊆ DMB×K(G) be the triangulated subcategory generated by the LH
τ

and Tate twists thereof.

Theorem 5.5. Mq is stable under convolution with objects of Hq.

Proof. Combine Lemma 4.1 with Proposition 5.2. �

Let Hq = K0(Hq) and Mq = K0(Mq) be the respective Grothendieck groups.
These are free Z[q±1]-modules via q[A] = [A(−1)], where (−1) is the inverse of
Tate twist. Convolution makes Hq a Z[q±1]-algebra, and Mq an Hq-module.
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Corollary 5.6. The coefficients cw
γ,τ(q) in the expansion

(−1)dτ [Cw ? LH
τ ] = ∑

γ

(−1)dγ cw
γ,τ(q)[LH

γ ],

are polynomials in q±1 with non-negative coefficients.

The algebra Hq is isomorphic to the Iwahori-Hecke algebra associated to W.
That is, Hq is isomorphic to the Z[q±1] algebra on generators Tw, w ∈ W, with
relations: TvTw = Tvw if `(vw) = `(v) + `(w); and (Ts + 1)(Ts − q) = 0 if `(s) = 1.
The isomorphism is given by Tw 7→ [Tw]. The convolution product Cw ? LH

τ , the
groups H∗B×K(G;Lτ), Ext•(Lτ ,Lγ), Ext•(j!Vτ ,Lγ), can all be explicitly computed
via the module Mq: Cw ? LH

τ because of Theorem 5.6; the rest because they are
pure and Tate (Theorem 4.4) and can consequently be recovered from their weight
polynomials. For an explicit description of Mq, see [LV] and [MS].

Corollary 5.6 appears to be new (although it might be possible to deduce it
from the results of [LV]). It is a generalization of the well known positivity result
for the Kazhdan-Lusztig basis (the classes [Cw]) in the Hecke algebra.

6. Informal remarks. LetA be an abelian category, Ho(A) the homotopy category
of chain complexes in A, and D(A) the derived category of A. Given a collection
of (bounded below) complexes {Ti} each of whose components are injectives,
set T =

⊕
i Ti. The complex E = End•A(T) has an evident dg-algebra structure.

Let ei ∈ E denote the idempotent corresponding to projection on Ti. The functor
Hom•(E ,−) yields an equivalence between the full triangulated subcategory of
D(A) generated by the Ti and the full triangulated subcategory of the dg-derived
category dgDer−E (of right dg E -modules) generated by the eiE .

The dg-algebra E , and hence D(A), becomes significantly more tractable if
E is formal, i.e., quasi-isomorphic to its cohomology H∗(E) (viewed as a dg-
algebra with trivial differential). In general, it can be difficult to establish formality.
However, there is a criterion due to P. Deligne: if E is endowed with an additional
Z-grading E i =

⊕
j∈Z E i,j which is respected by the differential, and each Hi(E) is

concentrated in degree i (for the additional grading), then E is formal.
In the setting of the previous sections, let L =

⊕
τ Lτ be the direct sum of

the simple objects in PervB×K(G). Let E = Ext•B×K(L,L), viewed as a dg-algebra
with trivial differential. Assume that the category Mq of the previous section is
the derived category of an abelian category containing enough injectives. Further,
assume that the forgetful functor Mq → DB×K(G) yields a grading (via the weight
filtration) in the sense of [BGS, §4]. Then, modulo some finiteness adjectives,
Theorem 4.4 and Deligne’s criterion yield DB×K(G) ' dgDer−E (this is Soergel’s
Formality Conjecture). Conjectures 4.2.2, 4.2.3 and 4.2.6 of [So] also follow.

Now DB×K(G) is not the derived category of an abelian category, but this is not a
serious problem for implementing the above argument. However, Mq → DB×K(G)
simply does not yield a grading. The category of Hodge modules is too large.
The issue is already visible over a point, since the category of Tate mixed Hodge
structures is larger than the category of graded vector spaces. Further, isolating a
suitable subcategory of Mq seems to be quite difficult (cf. [BGS, §4.5]). W. Soergel
has explained to me how combining the arguments of this note with a joint project
of his and M. Wendt’s on ‘motivic representation theory’ (see [SW]) should allow
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this basic idea to be carried through (also see footnote 3). This perspective is also
explicit in [BGS, §4] and [B, §G].
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