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1. Line fields. A line field on a smooth manifold M is a section of the projectivized
tangent bundle. If such a section is only given over M − {x1, . . . , xk}, for some finite
number of points x i ∈ M , then it is called a line field with singularities at the x i . Every
vector field induces a line field, but not every line field arises this way. Analogous
to the Poincaré-Hopf index formula for vector fields, H. Hopf demonstrated [Hopf,
Theorem 2.2]: if s is a line field with singularities x1, . . . , xk on a compact orientable
surface Σ, then

∑

i

(local degree of s at x i) = 2χ(Σ).

Here χ is the Euler characteristic and ‘local degree’1 is defined below.
This generalizes to higher dimensional manifolds. A treatment can be found in

[CG]. The precise attribution for the general result is a bit convoluted though as
several misstatements appearing in the earlier literature are corrected in [CG]. M.
Grant has informed me that the first complete proof appears to be due to K. Jänich
[J, §1, §2]. See [CG, §1] for a more detailed history.

I will give a simple and deliciously short proof of the general result (Corollary 3)
from the ‘de Rham viewpoint’. Actually, I will do a little bit more at no extra charge:
an extension to projectivizations of general vector bundles is provided in Theorem 2.2

2. The index. Let E → M be an oriented R-vector bundle of rank 2n over an
oriented manifold M of the same dimension 2n. Write PE→ M for its projectivization
and Fx for the fiber of PE → M over x ∈ M . As E is oriented, for each fiber Fx
we have a preferred generator [σx] of H2n−1(Fx) satisfying the local compatibility
condition: around any point of M , there is a neighborhood U and a generator [σU]
of H2n−1(PE|U) such that for any x ∈ U , the class [σU] restricts to [σx] in H2n−1(Fx).

Now suppose s is a section of PE → M defined over a punctured neighborhood
of x ∈ M . Let D be a coordinate ball centered at x over which PE is trivial. On
shrinking D if necessary, the class [σU] discussed above yields an orientation of PE|D.
On the other hand, D inherits an orientation from M . Orient RP2n−1 so that the
diffeomorphism PE|D ∼= D×RP2n−1 preserves orientations when D×RP2n−1 is given
the product orientation. Further, let D̄ be the closure of D. Then the orientation of D
induces an orientation of the boundary ∂ D̄. The local degree of the section s at x is
defined to be the degree, with respect to these orientations, of the composite map:

∂ D̄
s
−→ PE|D̄

∼=−→ D̄×RP2n−1 projection
−−−−−→ RP2n−1.

1Roughly, as for vector fields, the local degree (over surfaces) is the number of rotations a line makes
upon traversing a small simple closed loop around the singularity. If the line field came from a vector
field, then the line returns to its initial position twice for each time the vector that induced it does.

2Essentially the point is that the sum of the local degrees can be identified with a characteristic class
for projective bundles. In the case of a projectivization, this essentially forces the class to be a multiple
(easily seen to be 2) of the Euler class of the underlying vector bundle.
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Proposition 1. Let E → M be an oriented vector bundle of rank 2n on a compact
oriented manifold M of dimension 2n. Let π: PE→ M be its projectivization. If s and t
are sections of π over M − {x1, . . . , xk} and M − {y1, . . . , yl}, respectively, then
∑

i

(local degree of s at x i) =
∑

j

(local degree of t at y j).

Proof. The fibre of PE → M is the odd dimensional projective space RP2n−1 whose
De Rham cohomology vanishes except for in degrees 0 and 2n−1. Consequently, the
preferred generator of the degree 2n− 1 cohomology obtained from the orientation
of E is transgressive (see [BT, Proposition 18.13]). That is, there exists a global
differential form ψ on PE that restricts to the cohomology class of the preferred
generator in each fibre, and is such that dψ = −π∗τ for some form τ on M . Here
d is the exterior derivative. For each x i, let Di be a coordinate ball centered at x i.
Shrinking the Di if necessary, we may assume they do not overlap. Then
∫

M−∪i Di

τ=

∫

M−∪i Di

s∗π∗τ= −
∫

M−∪i Di

s∗dψ=
∑

i

∫

∂ D̄i

s∗ψ

by Stokes’ Theorem. Taking the limit as the radius of the Di tends to 0 yields
∫

M

τ=
∑

i

(local degree of s at x i).

Similarly for the section t. As τ is independent of the sections, the result follows.

Theorem 2. Let E→ M be an oriented vector bundle of rank 2n on a compact oriented
manifold M of dimension 2n. Let PE→ M be its projectivization. If s is a section of PE
over M − {x1, . . . , xk}, then

∑

i

(local degree of s at x i) = 2

∫

M

e(E),

where e(E) is the Euler class of E.

Proof. By Proposition 1 we may replace s by a section coming from a section t of
E→ M with finitely many zeroes {y1, . . . , yl}. Such a t always exists ([BT, Proposition
11.14]), and

∑

j

(local degree of t at y j) =

∫

M

e(E),

where ‘local degree of t ’ is the usual notion for vector bundles (see [BT, §11]). This
implies the desired result.

Corollary 3. Let s be a line field with singularities {x1, . . . , xk} on a compact oriented
manifold of even dimension. Then

∑

i

(local degree of s at x i) = 2χ(M).
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