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1. Presheaves

1.1. Let X be a space. A presheaf on X is the following collection of data: a set
F (V ) for each open subset V of X together with restriction maps resV

U : F (V ) →
F (U), whenever U is an open subset of V , satisfying:

(i) resU
U = id;

(ii) resV
U ◦ resW

V whenever U ⊆ V ⊆W .

1.2. Let F be a presheaf on a space X and let U ⊆ X be an open subset. We
sometimes write Γ(U,F ) instead of F (U).

1.3. A morphism α : F → G between two presheaves on X is a collection of maps
αU : F (U) → G(U) for each open subset U of X such that the following diagram
commutes

F (V )

resV
U

��

αV
// G(V )

resV
U

��

F (U)
αU

// G(U)

1.4. An element s ∈ F (V ) is called a section of F over V . We often write s|U
instead of resV

U (s) and say that s|U is the restriction of s to U .

1.5. The stalk Fx of F at a point x ∈ X is

Fx = lim−→
U3x

F (U),

where U runs through open neighborhoods of x and the morphisms in the dia-
gram that the limit is over are the restriction maps. Thus, Fx is the disjoint union⊔

U F (U) (U runs through open neighborhoods of x) modulo two sections being
equivalent if they have the same restriction to some neighborhood of x. If s is a
section of F over some open neighborhood of x, then the germ of s at x, denoted
sx, is the image of s in Fx. The germ sx describes the behaviour of s ‘arbitrarily
near to x’.
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1.6. Let α : F → G be a morphism of presheaves on X. Then α induces a unique
map αx : Fx → Gx, for each x ∈ X, such that αx(sx) = (α(s))x. Further, (idF )x =
idFx . If β : G→ H is another morphism of presheaves, then (βα)x = βxαx.

1.7. Remark. Let X be a space. Let Op(X) be the category with objects open
subsets of X and morphisms given by inclusions. A presheaf on X is equivalent to
the data of a contravariant functor from Op(X) to the category of sets. A morphism
of presheaves is equivalent to a natural transformation of such functors.

2. Sheaves

2.1. A presheaf F on X is a sheaf if:
(i) for any open set U ⊆ X, any open cover

⋃
i∈I Ui of U and any two sections

s, t ∈ F (U), if s|Ui
= t|Ui

for all i ∈ I, then s = t;
(ii) for any open set U ⊆ X, any open cover

⋃
i∈I Ui of U and any family of

sections si ∈ F (Ui) satisfying si|Ui∩Uj = sj |Ui∩Uj for all i, j ∈ I, there
exists s ∈ F (U) such that s|Ui = si for all i.

2.2. A presheaf satisfying (i) is called separated. The condition in (ii) is often called
the glueing or patching condition.

2.3. Exercise. Show that if F is a sheaf, then the section s obtained in (ii) above
is unique.

2.4. A morphism of sheaves is simply a morphism of presheaves. Hence, we have
the category of sheaves on a space X. The next result is incredibly useful. It says
that to check that a morphism of sheaves is an isomorphism, it is enough to do so
at each stalk.

2.5. Proposition. A morphism α : F → G of sheaves on a space X is an isomor-
phism if and only if αx : Fx → Gx is an isomorphism for every x ∈ X.

Proof. It is clear that if α is an isomorphism, then αx : Fx → Gx is an isomorphism
for every x ∈ X. For the converse it suffices to show that αU : F (U) → G(U) is a
bijection for every open subset U of X. Let s, t ∈ F (U) and suppose αU (s) = αU (t).
Then, using injectivity at stalks, we infer that su = tu for every u ∈ U . Hence, there
is an open cover

⋃
i∈I Ui of U such that s|Ui = t|Ui for all i ∈ I. Consequently, s = t

and thus, αU is injective for every open subset U of X. Now let r ∈ G(U). Using
surjectivity at stalks, we deduce that there exists an open cover

⋃
j∈J Uj of U and

a family of sections sj ∈ F (Uj) such that αUj (sj) = t|Uj . Let j, j′ ∈ J . We know
that αUj∩Uj′ is injective. As αUj∩Uj′ (sj |Uj∩Uj′ ) = t|Uj∩Uj′ = αUj∩Uj′ (sj′ |Uj∩Uj′ ), it
follows that the sj |Uj∩Uj′ = sj′ |Uj∩Uj′ . Hence, the sj glue to give a section s ∈ F (U)
such that αU (s) = t. �

2.6. Exercise. Find examples of sheaves F and G such that Fx ' Gx for every
x ∈ X, but F is not isomorphic to G. Why does this not contradict the result above?

2.7. Exercise. Let F,G be sheaves on a space X. Let α, β : F → G be morphisms
of sheaves. Show that if αx = βx for all x ∈ X, then α = β.

2.8. Example. The sheaf of continuous functions C0 on Rn is defined by

C0(U) = {continuous functions U → R}.

Restriction maps are given by restriction of functions. There are several variations
to this example: replace ‘continuous’ by ‘smooth’, ‘analytic’, etc., and/or replace
‘Rn’ by ‘manifold’, ‘variety’, ‘scheme’, etc.
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2.9. Example. Define a sheaf F on C by

F (U) = {holomorphic functions f(z) on U satisfying z df
dz = 1}.

Restriction maps are once more given by restriction of functions. The obvious vari-
ation on this theme is to change differential equation and/or replace ‘C’ by ‘mani-
fold’, ‘variety’, etc.

2.10. Example. Let X be a space. The constant sheaf on X with values in Z,
denoted ZX , is defined by

ZX(U) = {locally constant functions U → Z}.

The obvious variation to this theme is to replace ‘Z’ by any set/group. These are
the sheaves that we will primarily be interested in.

2.11. Example. The first example and the previous one are special cases of the
following more general construction. Let X and Y be spaces. Define a sheaf F on
X by

F (U) = {continuous maps U → Y }.
In the previous example Y was Z endowed with the discrete topology.

2.12. Exercise. Give an example of a presheaf that is not a sheaf.

2.13. Exercise. Let F be a sheaf. Show that F (∅) is the one point set. (I don’t
particularly care about this exercise: if you like, you can take F (∅) = {∗} as an
additional axiom for sheaves).

2.14. Exercise. Let f : X → Y be a map of spaces. Define a presheaf F on Y via
the assignment

U 7→ {s : U → X | fs = idU},
where U is open in Y and restriction maps are defined in the obvious way. Show
that F is a sheaf. This sheaf is called the sheaf of sections of f .

2.15. Remark. Clearly, the category of sheaves on the one point space is equivalent
to the category of sets.

3. Sheafification

3.1. Given a presheaf there is a ‘best possible’ sheaf one can get from F : identify
sections which have the same restrictions, and then add in sections for every family
of sections on open covers that can be glued together. The precise construction is
given below.

3.2. Let F be a presheaf on a space X. Define a presheaf F# as follows: a section
of F# over an open subset V of X is a collection (sv)v∈V , where sv ∈ Fv, such
that there is an open cover

⋃
i∈I Vi of V and sections s(i) ∈ F (Vi) for each i ∈ I

satisfying s(i)v = sv for all v ∈ Vi. The restriction to an open subset U of V is given
by (sv)v∈V 7→ (su)u∈U . Further, we have a morphism of presheaves can: F → F#

defined by can(s) = (sv)v∈V , where s ∈ F (V ).

3.3. Proposition. The presheaf F# is a sheaf. Further:

(i) canx : Fx
∼−→ F#

x is an isomorphism for all x ∈ X;
(ii) if G is a sheaf and α : F → G is a morphism of presheaves, then there is

a unique morphism of sheaves β : F# → G such that β ◦ can = α.

3.4. Exercise. Supply a proof.
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3.5. The sheaf F# is called the sheafification of F . In view of the proposition
above it is clear that if F is a sheaf then can: F

∼−→ F# is an isomorphism.

3.6. Remark. Let X be a space and let Sh(X) and PreSh(X) denote the category
of sheaves and presheaves on X respectively. Then sheafification gives a functor
# : PreSh(X)→ Sh(X). We also have a forgetful functor For : Sh(X)→ PreSh(X).
The result above may be reformulated as the statement: sheafification is left adjoint
to the forgetful functor.

3.7. Exercise. Show that the sheafification of a presheaf is unique up to unique
isomorphism.

4. Abelian sheaves

4.1. An abelian sheaf (or sheaf of abelian groups) is a sheaf F on a space X, such
that, for each open subset V of X, the set of sections F (V ) is an abelian group and
the restriction F (V )→ F (U) is a group homomorphism for each open subset U of
V . If one replaces ‘sheaf’ with ‘presheaf’, one also has the concept of an abelian
presheaf. A morphism α : F → G of abelian presheaves is a morphism of presheaves
such that αU : F (U)→ G(U) is a group homomorphism for every open subset U of
X. A morphism of abelian sheaves is simply a morphism of abelian presheaves.

4.2. Replacing ‘abelian group’ with ‘k-vector space’ (for some fixed field k) and
replacing ‘group homomorphism’ by ‘k-linear map’ we obtain the notion of a sheaf
of vector spaces. From now on, unless explicitly stated otherwise, ‘sheaf’ = ‘abelian
sheaf’.

4.3. Exercise. Verify that all the constructions of the previous sections go through
for abelian (pre-)sheaves. Namely, stalks admit a natural structure of abelian group,
all the morphisms constructed are morphisms of abelian groups, sheafification of an
abelian presheaf gives an abelian sheaf, the sheafification of an abelian presheaf is
an abelian sheaf, etc. Do the same for sheaves of vector spaces.

4.4. Warning. It is tempting to consider sheaves of objects in an abelian cat-
egory. However, these do not have all the nice properties of sheaves of abelian
groups/vector spaces. Several of the issues that arise can be traced to the behaviour
of limits/colimits in these categories. For instance, taking filtrant colimits of abelian
groups is an exact functor. This statement is not generally true for arbitrary abelian
categories. So some care needs to exercised in the general situation.

5. Support of a section

5.1. Let F be a sheaf on a space X. Let s be a section of F over an open set
U ⊆ X. The support of s, denoted supp s, is

supp s = {x ∈ U | sx 6= 0}.

5.2. Exercise. Show that supp s is the complement in U of the union of open subsets
V ⊆ U such that s|V = 0. In particular, supp s is closed in U .

6. Direct sums and products of sheaves

6.1. Let {Fi}i∈I be a family of sheaves on a space X. The direct sum (= coproduct)⊕
i Fi, and the product

∏
i Fi are defined in the obvious way. Namely, if U ⊆ X is

open, then(⊕
i

Fi

)
(U) =

⊕
i

Fi(U) and

(∏
i

Fi

)
(U) =

∏
i

Fi(U),

with restriction maps defined in the obvious way.



SHEAVES 5

7. Exact sequences of sheaves

7.1. Let α : F → G be a morphism of presheaves on a space X. Define a presheaf
ker(α) by ker(α)(U) = ker(αU : F (U)→ G(U)), restriction maps are those induced
by F . If F and G are sheaves, then ker(α) is also a sheaf.

7.2. Define a presheaf pre−im(α) by pre−im(α)(U) = im(αU : F (U) → G(U)),
restriction maps are those induced by G. Even if F and G are sheaves, pre−im(α)
is not in general a sheaf. If F and G are sheaves, we write im(α) for the smallest
subsheaf of G containing pre−im(α). More precisely, a section of im(α) over an
open subset U of X is a section s ∈ G(U) such that there is an open cover

⋃
i∈I Ui

of U with s|Ui ∈ αU (Ui) for all i ∈ I.

7.3. Exercise. Show that im(α) ' (pre−im(α))#.

7.4. Exercise. Give an example of a morphism of sheaves α : F → G on some
space X such that pre−im(α) is not a sheaf. Aside: The easiest example I could
come up with involved sheaves of continuous maps on S1. I would be very interested
if you can come up with a simpler ‘naturally occuring’ example.

7.5. A sequence of morphisms

F
α−→ G

β−→ H

of sheaves on a space X is called exact if ker(β) = im(α). The next result says that
no matter how complicated our sheaves are, exactness is a local issue.

7.6. Proposition. A sequence of morphisms

F → G→ H

of sheaves on a space X is exact if and only if

Fx → Gx → Hx

is exact for every x ∈ X.

7.7. Exercise. Prove this.

7.8. A sequence of morphisms

· · · → F i → F i+1 → · · ·
of sheaves on a space X is exact if F i−1 → F i → F i+1 is exact for each i. An exact
sequence of the form 0→ F → G→ H → 0 is also called a short exact sequence.

7.9. Exercise. Let α : F → G be a morphism of sheaves on a space X. Appropriately
formulate the notion of the sheaf cokernel coker(α).

7.10. Let 0 → F → G → H → 0 be a sequence of morphisms of sheaves on a
space X. If 0 → F (U) → G(U) → H(U) → 0 is exact for every open subset U of
X, then 0→ F → G→ H → 0 is an exact sequence. However, the converse is not
true.

7.11. Proposition. Let
0→ F → G→ H → 0

be an exact sequence of sheaves on a space X. Then

0→ F (U)→ G(U)→ H(U)

is exact for every open subset U of X.

7.12. Exercise. Prove this. Give an example of an exact sequence of sheaves 0 →
F → G→ H → 0 on a space X such that 0→ F (U)→ G(U)→ H(U)→ 0 is not
exact for some open subset U of X.
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7.13. Example. Let X be a space. Let Z(1) = {(2π
√
−1)n |n ∈ Z}. Then Z(1) is a

subgroup of C. Let C∗ = C−{0} viewed as an abelian group under multiplication.
The inclusion Z(1) ↪→ C and the map C→ C∗, z 7→ ez, induce an exact sequence
of sheaves

0→ ZX(1)→ CX
exp−−→ C∗

X → 1,

where ZX(1), CX , C∗
X are the constant sheaves with values in Z(1), C and C∗

respectively (see Example 2.10). If X is a complex manifold, then replacing CX

with the structure sheaf OX of holomorphic functions on X and replacing C∗
X by

the sheaf O∗X of nowhere vanishing holomorphic functions, one obtains the classical
exponential sheaf sequence.

7.14. Exercise. Let OC denote the sheaf of complex valued holomorphic functions
on C. Let d

dz : OC → OC be the derivative in the coordinate z. Show that the
sequence

0→ CC
i−→ OC

d
dz−−→ OC → 0

is exact. Here i is the evident inclusion.

7.15. We say that a morphism of sheaves is injective (resp. surjective) if the in-
duced map on stalks is injective (resp. surjective).

7.16. Exercise. Let α : F → G be an injective morphism of sheaves on a space X.
Is it true that αU : F (U)→ G(U) is injective for open subsets U of X? What about
if we replace ‘injective’ with ‘surjective’?

8. Additional exercises

8.1. Here are some exercises motivated by some questions that have been asked
in class.

8.2. Exercise. Determine whether the following presheaves on C are sheaves (re-
striction maps are the obvious ones):

(i) U 7→ {bounded continuous functions U → C}.
(ii) U 7→ {continuous functions f : U → C such that f(z)2 = z}.
(iii) U 7→ {continuous functions f : U → C such that there exists a continuous

function g : U → C satisfying g2 = f}.

8.3. Exercise. What are the limits and colimits of the following diagrams in the
category of abelian groups:

(i) Z 2−→ Z 2−→ Z 2−→ · · · .
(ii) · · · 2−→ Z 2−→ Z.
(iii) · · · 2−→ Z 2−→ Z 2−→ · · · .

8.4. Exercise. Meditate on the following: let X be a space. Let Op(X) be the
category with objects open sets of X, and morphisms given by inclusion maps. A
presheaf (of sets) is a contravariant functor F : Op(X)→ Set. As before, if U ⊆ V
is the inclusion of open sets, we will call the corresponding map F (V )→ F (U) the
restriction map. A presheaf is a sheaf if for every U ∈ Op(X) and for every open
cover

⋃
i∈I Ui of U the limit of the diagram

∏
i∈I F (Ui)

res1
//

res2
//

∏
(i,j)∈I×I F (Ui ∩ Uj)

is F (U). Here res1 is the map induced by the family of restriction maps F (Ui) →
F (Ui ∩Uj), and res2 is the map induced by the family of restriction maps F (Uj)→
F (Ui ∩ Uj).
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Alternatively, a presheaf F is a sheaf if, for every U ∈ Op(X), and every open
cover

⋃
i∈I Ui of U that is stable under finite intersections, the morphism

F (U)→ lim←−
i∈I

F (Ui)

is an isomorphism (the morphisms in the limit diagram are the restriction maps).

8.5. Exercise. Let X be a space and let F be the presheaf on X defined by U 7→ Z,
restriction maps are the identity map. Let G be a sheaf on X. Make sense of the
following statement: to define a morphism ZX → G it is sufficient to define a
morphism F → G, further every morphism ZX → G arises from a morphism
F → G.

8.6. Exercise. Consider the category of commutative rings with 1 (morphisms are
required to send 1 to 1). What is the coproduct of two objects in this category? Now
consider the category of commutative rings with 1 that have no nilpotent elements
(morphisms are again required to send 1 to 1). What is the coproduct of two objects
in this category?

8.7. Exercise. What is the coproduct in the category of sets? What is the coproduct
in the category of abelian groups? Does the coproduct on abelian groups agree with
that on the underlying sets?
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