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All sheaves are assumed to be abelian sheaves. For a space X we write Sh(X)
for the category of sheaves on X.

At first reading I recommend that you skip straight to §9 and §10. You may also
want to glance at the section on adjoint functors in the notes for week 3. Further,
when you do start reading the sections in this set of notes sequentially, keep a copy
of §12 on the side and try to do these additional exercises as you go along.

1. Pushforward

1.1. Let f : X → Y be a map between spaces and let F be a sheaf on X. Define
a presheaf f∗F on Y by

f∗F (V ) = F (f−1(V ))

for an open subset V of Y . If U is an open subset of V , define the restriction map
f∗F (V ) → f∗F (U) by s 7→ resf−1(V )

f−1(U)(s). The presheaf f∗F is a sheaf.

1.2. If α : F → G is a morphism of sheaves on X, define a morphism f∗(α) : f∗F →
f∗G as follows: a section of f∗F over an open subset V of X is, by definition, a
section s ∈ F (f−1(V )) and f∗(α) is given by mapping s to αf−1(V )(s) which is a
section of G(f−1(V ). The latter is, by definition a section of f∗G(V ). Consequently,
we obtain a functor

f∗ : Sh(X) → Sh(Y ).

The functor f∗ is called the pushforward or the direct image along the map f .
1
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1.3. It is clear that if g : Y → Z is another map between spaces, then g∗f∗ = (gf)∗.

1.4. Example. Let X be a space and let a : X → pt be the obvious map. If F is a
sheaf on X, then a∗F = F (X) = Γ(X;F ). In this special case a∗ is also called the
global sections functor. The reason for this terminology should be obvious.

1.5. Example. Let X be a space and let x ∈ X. Then the pushforward of the
constant sheaf, Zx on {x}, along the inclusion map i : {x} ↪→ X, is given by

i∗Zx(U) =

{
Z if x ∈ U ;
0 otherwise,

where U is an open subset of X. The sheaf i∗Zx is called the skyscraper sheaf
supported on x.

1.6. Example. More generally, if f : X ↪→ Y is the inclusion of a subspace and F
is a sheaf on X, then

f∗F (U) = F (U ∩X),
for open subsets U of Y .

1.7. Proposition. Let f : X → Y be a map between spaces. Let

0 → F → G → H

be an exact sequence of sheaves on X. Then the sequence

0 → f∗F → f∗G → f∗H

is exact.

Proof. As 0 → F → G → H is exact, the sequence 0 → F (U) → G(U) → H(U) is
exact for every open subset U of X. The result follows. �

1.8. Exercise. Show, via an example, that if 0 → F → G → H → 0 is an exact
sequence of sheaves on a space X, then it is not necessarily true that 0 → f∗F →
f∗G → f∗H → 0 is exact.

1.9. Proposition. Let
i : Z ↪→ X

be the inclusion of a closed subspace. Then the functor i∗ is exact. That is, if

0 → F → G → H → 0

is an exact sequence of sheaves on Z, then

0 → i∗F → i∗G → i∗H → 0

is exact.

Proof. Courtesy of the previous result, we only need to show that i∗G → i∗H → 0
is exact. Let z ∈ Z and let s be a section of i∗H over an open neighborhood U of z.
Then s is a section of H over U ∩Z. As G → H → 0 is exact, there is some tz ∈ Gz

that maps to sz. It follows that (i∗G)z → (i∗H)z → 0 is exact. If x ∈ X − Z,
then the stalks (i∗G)x and (i∗H)x vanish. Hence, i∗G → i∗H → 0 is exact at all
stalks. �

1.10. Exercise. Is the analogue of the above result true for inclusions of open
subspaces?

1.11. The above discussion on exactness is summarized by saying that the functor
f∗ is left exact but not generally exact. However, if f = i is the inclusion of a closed
subspace, then i∗ is exact.
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2. Pullback

2.1. Let f : X → Y be a map between spaces and let F be a sheaf on Y . Let U
be an open subset of X. Define a presheaf f tF on X via the assignment

Γ(U ; f tF ) = lim−→
V⊇f(U)

F (V ),

where V runs through the open neighborhoods of f(U) and the maps in the limit
diagram are the restriction maps (I am going to stop repeating this about the maps,
it should be clear by now that the maps in limit diagrams of this form are going
to be the restriction maps. Constantly repeating this is starting to make for some
very tedious exposition). The restriction maps for this presheaf are defined in the
obvious way. Note: if f(U) is open in Y , then lim−→V⊇f(U)

F (V ) = F (f(U)). The

presheaf f tF is usually not a sheaf. The sheafification of this presheaf, denoted
f−1F , defines a functor

f−1 : Sh(Y) → Sh(X),

called the pullback or the inverse image along the map f . The functor f−1 is defined
on morphisms in the evident way.

2.2. Exercise. Find an example demonstrating that the presheaf f tF is not neces-
sarily a sheaf.

2.3. Example. Let j : U ↪→ X be the inclusion of an open subset and let F be a
sheaf on X. Then the assignment

V 7→ lim−→
V ′⊇V

F (V ′) = F (V ),

V open in U (and hence open in X), is already a sheaf. Thus,

j−1F (V ) = F (V ).

2.4. The definition of f−1 implies that for x ∈ X,

(f−1F )x = Ff(x). (2.4.1)

2.5. Exercise. Verify this assertion.

2.6. Let g : Y → Z be another map of spaces. Then one checks, either directly
from the definitions or using the results of the next section, that (gf)∗ = f∗g∗.

2.7. Exercise. Verify this.

2.8. Remark. Strictly speaking, the equality above is really a canonical isomorphism.
However, this canonical isomorphism is ‘coherent’: there is no ambiguity in pulling
back along three composable maps, all the diagrams obtained from these canonical
isomorphisms commute, etc. So nothing is lost by replacing the isomorphism with
equality.

2.9. Example. Let F be a sheaf on a space X, let x ∈ X and let i : {x} ↪→ X be
the inclusion map. Then i−1F = Fx.

2.10. Example. Let F be a sheaf on a space X and let f : W ↪→ X be the inclusion
of a subspace. Then the sheaf f−1F is called the restriction of F to W . This sheaf
is often denoted F |W .

2.11. Example. Let a : X → pt be the obvious map. Then a−1Zpt is canonically
isomorphic to ZX .
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2.12. Proposition. Let f : X → Y be a map between spaces and let

0 → F → G → H → 0

be an exact sequence of sequence of sheaves on Y . Then the sequence

0 → f−1F → f−1G → f−1H → 0

is exact.

Proof. It suffices to check exactness at stalks. This follows from (2.4.1). �

2.13. In other words, f−1 is an exact functor.

2.14. Warning. In the literature, the functor f−1 is sometimes denoted by f∗. Some
care needs to be exercised to avoid confusion, since the functor f∗ is a different beast
from ‘pullback’ maps on cohomology groups. To further add to the confusion, if one
is dealing with sheaves in algebraic geometry (à la coherent/quasi-coherent sheaves)
then f∗ is what we are calling f−1 composed with tensoring with the structure
sheaf (whatever that may be). On the same note, f∗ should not be confused with
‘pushforward’ maps on homology groups.

3. The adjunction (f−1, f∗)

3.1. Let f : X → Y be a map between spaces. Let F be a sheaf on Y and let U
be an open subset of Y . Then

Γ(U ; f∗f−1F ) = Γ(f−1(U); f−1F ).

Clearly U ⊇ f(f−1(U)). So, using the defining property of a colimit we obtain a
map

F (U) → lim−→
V⊇f(f−1(U))

F (V ) = Γ(f−1(U), f tF ).

Composing this with the canonical morphism from a presheaf to its sheafification,
we obtain a morphism of sheaves

ηF : F → f∗f
−1F.

3.2. Note that a section s ∈ F (U) maps to 0 under ηF if and only if there is an
open subset V of U containing f(f−1(U)) such that s|V = 0.

3.3. The family of morphisms ηF , F ∈ Sh(Y ), defines a natural transformation
η : id → f∗f

−1.

3.4. Example. Let j : U ↪→ X be the inclusion of an open subset. Then we have
the following description of the unit map η : id → j∗j

−1. Let F be a sheaf on X
and let V be an open subset of X. Then

j∗j
−1F (V ) = F (U ∩ V )

and if s ∈ F (V ) then ηF maps s to s|U∩V .

3.5. Let G be a sheaf on X and let V be an open subset of X. Then

f tf∗G(V ) = lim−→
V ′⊇f(V )

f∗G(V ′) = lim−→
V ′⊇f(V )

G(f−1(V ′)),

where V ′ runs through open subsets of Y containing f(V ). Certainly, if V ′ contains
f(V ), then f−1(V ′) contains V . Hence, using the universal property of the colimit
we obtain a canonical map

f tf∗G(V ) → G(V ).
This gives a morphism from the presheaf f tf∗F to G. Using the universal property
of sheafification we obtain a morphism of sheaves

εG : f−1f∗G → G.
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3.6. The morphism εG is easy to describe at the level of stalks. Let x ∈ X. Then

(f−1f∗G)x = (f∗G)f(x) = lim−→
V 3f(x)

G(f−1(V )).

The map (f−1f∗G)x → Gx induced by εG is the evident one given by the universal
property of the colimit.

3.7. In particular, if f : X ↪→ Y is the inclusion of a subspace, and F is a sheaf on
X, then εF : f−1f∗F → F is an isomorphism.

3.8. The family of morphisms εG, G ∈ Sh(X), defines a natural transformation
ε : f−1f∗ → id. With a bit of patience one checks that the compositions

f∗G
ηf∗G−−−→ f∗f

−1f∗G
f∗(εG)−−−−→ f∗G and f−1F

f−1(ηF )−−−−−→ f−1f∗f
−1F

εf−1F−−−−→ f−1F

are equal to the identity on f∗G and f−1F respectively. In other words, f−1 is left
adjoint to f∗.

3.9. Exercise. Check this!

4. Support of a sheaf

4.1. Let F be a sheaf on a space X. Let U ⊆ X be an open subset. Recall that
the support of a section s ∈ F (U) is the complement in U of the union of open sets
on which s restricts to 0. The support of F , denoted suppF , is defined to be the
complement in X of the union of all open subsets U of X such that F |U = 0.

4.2. It is clear that if x 6∈ suppF then Fx = 0. However, the converse is not true.

4.3. Exercise. Find an example demonstrating that the reverse implication is false.

4.4. Proposition. We have

suppF = {x ∈ X |Fx 6= 0}.

Proof. Let x ∈ suppF . Then for every open neighborhood U of x the restriction
F |U is non-zero. In particular, every open neighborhood of x contains a point at
which the stalk of F is non-zero. Hence, x ∈ {x ∈ X |Fx 6= 0}. Conversely, let
y ∈ {x ∈ X |Fx 6= 0}. Then every open neighborhood of y contains a point at
which the stalk of F does not vanish. Hence, F |U 6= 0 for every open neigborhood
U of x. Thus, y ∈ suppF . �

4.5. Exercise. Let j : U ↪→ X be the inclusion of an open subset. Let F be a sheaf
on U . Is it true that supp j∗F is contained in U? What about if we replace the open
inclusion by a closed inclusion?

4.6. Exercise. Let Y be a space and let X ⊆ Y be a subspace. Let ShX(Y ) be the
category of sheaves on Y with support contained in X. Prove that the categories
Sh(X) and ShX(Y ) are equivalent.

5. Extension by zero

5.1. Let i : Y ↪→ X be the inclusion of a closed subspace and F a sheaf on Y .
Then the sheaf i∗F on X is the unique (up to isomorphism) sheaf FY on X such
that

FY |Y = F and FY |X−Y = 0.

In particular, (FY )x = 0 if x 6∈ Y , and (FY )y = Fy if y ∈ Y .

5.2. The above statements are not true if we replace ‘closed’ by ‘open’. We will
now rectify this situation.
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5.3. Let j : U ↪→ X be the inclusion of an open subset and let F be a sheaf on U .
Define a sheaf j!F on X by

j!F (V ) =

{
F (V ) if V ⊆ U ;
0 otherwise,

where V is an open subset of X. Restriction maps are defined in the obvious way.
Then we have a functor

j! : Sh(U) → Sh(X),
with j! defined on morphisms in the evident way. The sheaf j!F is called the exten-
sion by zero of F to X. It is clear that if j′ : U ′ ↪→ U is the inclusion of an open
subset, then (j′j)! = j′!j!.

5.4. The sheaf j!F is the unique (up to isomorphism) sheaf on FU on X such that

FU |U = F and FU |X−U = 0.

The sheaf FU = j!F is called the extension by zero of F to X.

5.5. Proposition. The functor j! is exact. That is, if

0 → F → G → H → 0

is an exact sequence of sheaves on U , then

0 → j!F → j!G → j!H → 0

is an exact sequence of sheaves on X.

Proof. Exactness at the level of stalks is clear. �

6. The adjunction (j!, j∗)

6.1. Let X be a space, let j : U ↪→ X be the inclusion of an open subspace and let
F be a sheaf on U , and let V ⊆ U be an open subset. Then

jtj!F (V ) = F (V ).

As j is an open inclusion, the presheaf jtj!F is a sheaf. Hence, we obtain a canonical
isomorphism

ηF : F
∼−→ j∗j!.

6.2. Now let G be a sheaf on X, and let V ′ be an open subset of X. Then

j!j
tG(V ′) =

{
G(V ′) if V ′ ⊆ U ;
0 otherwise.

Consequently, we obtain a map j!j
tF → F . Now jtF is canonically isomorphic to

j∗F . So we obtain a canonical morphism

εF : j!j
∗F → F.

The families ηF , F ∈ Sh(U), and εG, G ∈ Sh(X), define natural transformations

η : id → j∗j! and ε : j!j
∗ → id.

6.3. The compositions

j∗G
ηj∗G−−−→ j∗j!j

∗G
j∗(εG)−−−−→ j∗G and j!F

j!(ηF )−−−−→ j!j
∗j!F

εj!F−−−→ j!F

are equal to the identity on j∗G and j!F respectively. In other words, j! is left
adjoint to j∗.

6.4. Exercise. Verify this assertion.
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7. Sections with support in a closed subspace

7.1. Let i : Z ↪→ X be the inclusion of a closed subspace and let F be a sheaf on
X. Define a sheaf F ′ by

F ′(U) = {s ∈ F (U) | supp s ⊆ Z}. (7.1.1)

As usual, restriction maps are defined in the obvious way.

7.2. Exercise. Show that F ′ is indeed a sheaf.

7.3. Define
i! : Sh(X) → Sh(Z), F 7→ i∗F ′.

7.4. Proposition. The functor i! is left exact. That is, if

0 → F → G → H

is an exact sequence of sheaves on X, then

0 → i!F → i!G → i!H

is exact.

7.5. Exercise. Verify this.

8. The adjunction (i∗, i!)

8.1. Let i : Z ↪→ X be the inclusion of a closed subspace. Let F be a sheaf on X
and let F ′ be as in (7.1.1). Let U ⊆ X be an open subset. Then

Γ(U ; i∗i!F ) = Γ(U ∩ Z; i!F ) = Γ(U ∩ Z; i∗F ′).

Now
Γ(U ∩ Z; itF ′) = lim−→

V⊇U∩Z

F ′(V ) = F ′(U ∩ Z).

Hence, we obtain a canonical isomorphism

F ′ ∼−→ i∗i
!F.

Furthermore, there is an obvious (injective) map F ′ → F . Consequently, we obtain
a canonical morphism

εF : i∗i
!F → F.

8.2. Now let G be a sheaf on Z and let (i∗G)′ be as in (7.1.1). Then (i∗G)′ = i∗G.
Consequently, if V is an open subset of Z, then

Γ(V ; it(i∗G)′) = lim−→
U⊇V

Γ(U ; i∗G) = lim−→
U⊇V

G(U ∩ Z) = G(V ).

Hence, we obtain a map G → it(i∗G)′ which induces a canonical isomorphism

ηG : G → i!i∗G.

The families ηG, G ∈ Sh(Z), and εF , F ∈ Sh(X), define natural transformations

η : id → i!i∗ and ε : i∗i
! → id.

8.3. The compositions

i!F
η

i!F−−−→ i!i∗i
!F

i!(εF )−−−−→ i!F and i∗G
i∗(ηG)−−−−→ i∗i

!i∗G
εi∗G−−−→ i∗G

are equal to the identity on i!F and i∗G respectively. In other words, i∗ is left
adjoint to i!.

8.4. Exercise. Verify this assertion.
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9. Recollement

9.1. Exercise. Meditate on why the title of this section is what it is.

9.2. The myriad relations between pushing forward and pulling back can be a bit
overwhelming at first. Here’s a quick summary to help you keep track of some of
the important ones.

9.3. For every map f : X → Y between spaces there are functors

f∗ : Sh(X) → Sh(Y ) pushforward (left exact);

f−1 : Sh(Y ) → Sh(X) pullback (exact).

9.4. Let j : U ↪→ X be the inclusion of an open subspace and let i : Z ↪→ X be the
inclusion of the closed complement Z = X −U . Then the categories Sh(U), Sh(X)
and Sh(Z) are related by the following functors:

j∗ : Sh(U) → Sh(X) pushforward (left exact);

j! : Sh(U) → Sh(X) extension by 0 (exact);

j∗ : Sh(X) → Sh(U) restriction (exact);

i∗ : Sh(Z) → Sh(X) pushforward (exact);

i∗ : Sh(X) → Sh(Z) restriction (exact);

i! : Sh(X) → Sh(Z) sections with support in Z (left exact).

9.5. We have adjunctions:

(j!, j∗, j∗) and (i∗, i∗, i!),

where (x, y, z) means x is left adjoint to y and y is left adjoint to z.

9.6. Further, we have the identities:

j∗i∗ = 0, i∗j! = 0 and i!j∗ = 0.

9.7. The adjunction maps give canonical isomorphisms:

i∗i∗
∼−→ id ∼−→ i!i∗ and j∗j∗

∼−→ id ∼−→ j∗j!.

9.8. The adjunction maps also give exact sequences

0 → j!j
∗F → F → i∗i

∗F → 0 and 0 → i∗i
!F → F → j∗j

∗F,

for every F ∈ Sh(X).

10. Mayer-Vietoris sequences

10.1. Exercise. Meditate on why the title of this section is what it is.

10.2. Let j : U ↪→ X be the incluson of an open subspace and let i : Z ↪→ X be
the inclusion of a closed subspace. Note: we are not assuming Z = X − U . Let
F ∈ Sh(X). Define

ΓU (F ) = j∗j
∗F,

ΓZ(F ) = i∗i
!F,

FU = j!j
∗F,

FZ = i∗i
∗F.
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10.3. Now let Z1, Z2 ⊆ X be closed subsets that cover X. Then one obtains a
short exact sequence

0 → F
+−→ FZ1 ⊕ FZ2

−−→ FZ1∩Z2 → 0,

where + = ( η1
η2 ), − = ( η′1 −η′2 ), and ηi : F → FZi , η′i : FZi → FZ1∩Z2 , i ∈ {1, 2}, are

the adjunction maps.

10.4. Similarly, if U1, U2 ⊆ X are open subsets that cover X, then we have a short
exact sequence

0 → FU1∩U2

+−→ FU1 ⊕ FU2

−−→ F → 0,

where + = ( ε1 ε2 ), − =
(

ε′1
−ε′2

)
, and εi : FU1∩U2 → FUi

, ε′i : FUi → F , i ∈ {1, 2},
are the adjunction maps.

10.5. Analogously, we have exact sequences

0 → F
+−→ ΓU1(F )⊕ ΓU2(F ) −−→ ΓU1∩U2(F )

and
0 → ΓZ1∩Z2(F ) +−→ ΓZ1(F )⊕ ΓZ2(F ) −−→ F,

where the maps + and − are induced by adjunction maps.

10.6. Exercise. Verify that these sequences are indeed exact. Hint: This can be
done extremely quickly if you look at stalks.

11. Gluing sheaves

11.1. Let X be a space and let
⋃

i∈I Ui = X be an open cover of X. Set Uij =
Ui ∩ Uj and set Uijk = Ui ∩ Uj ∩ Uk for i, j, k ∈ I.

11.2. Consider a sheaf F on X. Set Fi = F |Ui , for i, j ∈ I. Then we have canonical
isomorphisms

θi : F |Uij

∼−→ Fi|Uij ,

for all i, j ∈ I. Let θji = θj ◦ θ−1. Then
(i) θii = idFi

, for all i ∈ I;
(ii) (θij |Uijk

) ◦ (θjk|Uijk
) = θik|Uijk

, for all i, j, k ∈ I.
In fact, one can reconstruct F from the above data:

11.3. Proposition. Let
⋃

i∈I Ui = X be an open cover of X. Assume to be given
the following data:

(i) a sheaf Fi on Ui for each i ∈ I;
(ii) for each pair (i, j) ∈ I × I an isomorphism θji : Fi|Uij

∼−→ Fj |Uij
. These

isomorphisms satisfying:

θii = idFi and (θij)|Uijk
◦ (θjk)|Uijk

= θik|Uijk

for all i, j, k ∈ I.
Then there exists a sheaf F on X, and isomorphisms fi : F |Ui

∼−→ Fi, such that
θij ◦ fj |Uij = fi|Uij . Moreover, the family (F, {fi}i∈I) is unique up to canonical
isomorphism.

Proof sketch. For each open set U of X, define F (U) to be the submodule of∏
i∈I Fi(U ∩ Ui) consisting of families (si)i∈I such that for any (i, j) ∈ I × I,

θji(si|U∩Uji
) = sj |U∩Uji

.

This assignment gives a sheaf. The isomorphisms fi are induced by the projection
maps

∏
j Fj(U ∩ Uj) → Fi(U ∩ Ui).
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Now suppose (G, {gi}i∈I) is another family satisfying the same properties. Then
the isomorphisms

g−1
i ◦ fi : F |Ui

∼−→ G|Ui

glue to give an isomorphism F
∼−→ G. �

11.4. Example. Let U1, U2 ⊆ S1 be the complements of the north and south pole
respectively. Let U±

12 denote the two connected components of U1∩U2. Let ζ ∈ C×.
Define a sheaf Lζ on S1 by gluing CU1

and CU2
as follows. For ε ∈ {+,−}, let

θε : CU1
|Uε

12
→ CU2

|Uε
12

be defined by
θ+ = 1 and θ− = ζ.

If ζ = 1, then we just obtain the constant sheaf CS1 . However, for ζ 6= 1, the sheaf
Lζ is not isomorphic to CS1 .

11.5. Exercise. What is Γ(S1;Lζ)?

12. Additional exercises

12.1. Exercise. Let f : X → Y be a map between spaces. Let G be a presheaf on
Y . Construct a canonical isomorphism

(f tG)# ∼−→ f−1(G#).

12.2. Exercise. Let X be a space and let
⋃

i Ui = X be an open cover of X. Write
ji : Ui ↪→ X for the inclusion map. Let F be a presheaf on X. Suppose jt

iF is a
sheaf for all i. Prove that F is a sheaf.

12.3. Exercise. Let F : A → B and G : B → A be functors between categories A

and B. Suppose F is left adjoint to G. Show that G preserves limits and F preserves
colimits.

12.4. Exercise. Let f : X → Y be a map between spaces. In general, is it possible
for f∗ to have a right adjoint?

12.5. Exercise. Let F,G be sheaves on a space X. Show that the assignment

U 7→ HomSh(U)(F |U , G|U )

defines a sheaf on X (what are the restriction maps?). This sheaf is usually denoted
by Hom(F,G) and is called sheaf Hom. Note that Γ(X;Hom(F,G)) = Hom(F,G).

12.6. Exercise. Let
X = {(x, y) ∈ R2 |xy ≥ 1}.

Define
f : X → R, (x, y) 7→ y.

Describe f∗CX as explicitly as possible.

12.7. Exercise. In this exercise all sheaves are understood to be sheaves of C-vector
spaces. Define

f : S1 → S1, z 7→ z2, and g : S1 → S1, z 7→ z3.

The ‘square root’ sheaf on S1 is defined to be

S = {aφ | a ∈ C, φ : S1 → S1 is a continuous map such that fφ = id}.

The ‘cube root’ sheaf on S1 is defined to be

Q = {aφ | a ∈ C, φ : S1 → S1 is a continuous map such that gφ = id}.
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(i) Describe S and Q as explicitly as possible. Remark/hint: See Example 11.4.
Both S and Q are examples of what are called ‘local systems’ or ‘twisted
constant sheaves’. We have Sx ' Qx ' (CS1)x ' C. However, no two of
these three sheaves are isomorphic to each other. Both S and Q have no
global sections. To understand S you may want to pick an open cover of
S1 consisting of two sets such that S restricted to either of these sets is the
constant sheaf. Now something interesting will happen with the restriction
maps to the intersection of these sets: there will be a ‘twist’ that will prevent
you from gluing sections to obtain a non-trivial global section. Your job is
to figure out what this ‘twist’ is. Now do a similar thing for Q. Can you
make an educated guess for the general situation of ‘n-th root’ sheaves?

(ii) Describe the sheaves f∗CS1 , g∗CS1 , f∗S and g∗Q.
(iii) Describe the sheaves f−1CS1 and g−1CS1 . Hint: let h : X → Y be any

map between spaces. What is h−1CY ?

12.8. Exercise. Let U1, U2 ⊆ S1 be the complements of the north and south poles
respectively. Classify (up to isomorphism) all sheaves F (of C-vector spaces) on S1

satisfying the following property:

F |U1 ' CU1
and F |U2 ' CU2

.

Also describe Γ(S1;F ) for F as above. Now let F1, F2 be sheaves on S1 satisfying
the above. Describe Hom(F1, F2). Hint: Do the previous exercise.

12.9. Exercise. Define a space P1 as follows. As a set P1 = C t {∞}. Non-
trivial closed sets in P1 are finite sets. So that non-empty open sets are of the form
P1 − {x1, . . . , xn}. Define a sheaf OP1 on P1 via the assignment

U 7→ {rational functions U → C that have no poles in U},
where a rational function g(x) is said to have no pole at ∞ if and only if g( 1

y ) has
no pole at y = 0.

Compute:
(i) Γ(P1 − {0};OP1);
(ii) Γ(P1 − {∞};OP1);
(iii) Γ(P1;OP1).
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13. The adjunction (f−1, f∗) revisited

13.1. Let f : X → Y be a map of spaces. I will now sketch another proof of the
fact that f−1 is left adjoint to f∗ that avoids unit/counit maps.

13.2. Write Sh(−) and PreSh(−) for the category of sheaves and presheaves on −,
respectively. Let Op(−) denote the category of open sets of −.

13.3. Let F ∈ Sh(X) and let G ∈ Sh(Y ). We need to construct a bifunctorial
isomorphism

HomSh(X)(f−1G, F ) ' HomSh(Y )(G, f∗F ).
It suffices to construct a bifunctorial isomorphism

HomPreSh(X)(f tG, F ) ' HomPreSh(Y )(G, f∗F ).

Now an element α ∈ HomPreSh(Y )(G, f∗F ) consists of a family of maps

{αV : G(V ) → F (f−1(V ))}V ∈Op(Y )

that are compatible with the restriction maps. Equivalently, this is a family of maps

{αU : G(V ) → F (U)}V ∈Op(Y ),U∈Op(X),U⊆f−1(V )

that are compatible with the restriction maps. Consequently, we obtain a family of
maps

{α̃U : lim−→
V⊇f(U)

G(V ) → F (U)}U∈Op(X)

that are compatible with restriction maps. This is precisely the data of an ele-
ment in HomPreSh(X)(f tG, F ). A moments thought should convince you that this
correspondence gives the require bifunctorial isomorphism.
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