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A lot of the ‘abstract nonsense’ below and in previous (and forthcoming) notes is
more than what is strictly necessary to get an understanding of the basic notions of
this course. In fact, much of it is a digression from the ‘main topics’. Its inclusion in
the notes partly reflects my own biases and is also partly prompted by some of the
questions you asked in class. Try not to get bogged down in some of the technical
details (this is not to say that the details aren’t important).

1. Yoneda lemma

1.1. Let F,G : A → B be functors between categories A and B. Recall that
morphism of functors φ : F → G consists of a morphism φX : F (X) → G(X) for
each X ∈ A, such that φY ◦ F (f) = G(f) ◦ φX for every morphism f : X → Y .
Further, we use the terms ‘functorial’, ‘natural’ and ‘canonical’ as synonyms for ‘a
morphism of functors’. Denote the identity endomorphism of a functor F by 1F .

1.2. A functor F : A → B is full if the map it induces on Hom sets is surjective;
it is faithful if the induced map is injective. It is an equivalence if there exists
a functor G : B → A such that FG and GF are canonically isomorphic to idB

and idA, respectively. In this situation the functors F and G are mutually inverse
equivalences. An equivalence is necessarily full and faithful. Moreover:

1.3. Proposition. Let F : A → B be a full and faithful functor. Then F is an
equivalence if and only if every object Y ∈ B is isomorphic to F (X) for some
X ∈ A.

Proof. Necessity is clear. Let’s show sufficiency. For each Y ∈ B we pick a pair
(XY , φY ) with XY ∈ A and φY : Y

∼−→ F (XY ) an isomorphism. Define G : B → A

as follows. For an object Y ∈ B, G(Y ) = XY . If f : Y → Z is a morphism in B,
then G(f) : XY → XZ is given by the formula

G(f) = F−1(φZ ◦ f ◦ φ−1Y ),

where by an abuse of notation F−1 is the isomorphism (of sets)

HomB(F (XY ), F (XZ))
∼−→ HomA(XY , XZ)

given by the functor F . One checks easily that F and G are mutually inverse
equivalences. �
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1.4. Exercise. Show that the functor G in the proof is indeed a functor.

1.5. Exercise. Show that the functors F and G in the proof are mutually inverse
equivalences.

1.6. Let A be a category. Let Set be the category of sets. Let Funct(Aop,Set) be
the category of contravariant functors A → Set. A functor F ∈ Funct(Aop,Set)
is representable if F ' HomA(−, X) for some object X ∈ A. In this situation,
the object X is said to represent F . For X ∈ A we set hX = HomA(−, X), so
that hX ∈ Funct(Aop,Set). To ease notation, for F,G ∈ Funct(Aop,Set), write
Hom(F,G) for the set of natural transformations F → G.

1.7. Lemma (Yoneda lemma). Let X ∈ A and let F ∈ Funct(Aop,Set). Then the
map

Hom(hX , F )→ F (X),

φ 7→ φX(idX)

is an isomorphism.

Proof. The inverse F (X) → Hom(hX , F ) is defined as follows. Let u ∈ F (X).
Then for Y ∈ A, define the map uY : HomA(Y,X) → F (Y ) by f 7→ (Ff)(u). The
family uY , Y ∈ A defines a natural transformation hX → F . An easy computation
shows that this gives the required inverse. �

1.8. Exercise. Do the afore-mentioned ‘easy computation’.

1.9. Problem. Meditate on the Yoneda lemma.

1.10. Corollary. The functor A→ Funct(Aop,Set), X 7→ hX , is full and faithful.

Proof. Apply the Yoneda lemma to Hom(hY , hX), X,Y ∈ A. �

1.11. Remark. The functor A → Funct(Aop,Set), X 7→ hX , is called the Yoneda
embedding. Morally, all that the abstract nonsense above says is that an object
X ∈ A is completely determined by the morphisms into it. So, if you want to study
an object, then study the morphisms into it.

2. Additive categories

2.1. A category A is additive if all Hom sets are equipped with an abelian group
structure such that composition of morphisms is bilinear and if all finite products
exist in A. The empty product gives a terminal object in A. For X,Y ∈ A, the

maps X
id←− X

0−→ Y give a unique map X → X × Y . Similarly, there is a unique
map Y → X × Y . Consequently, finite products coincide with the corresponding
coproducts. In particular, the terminal object is also initial and is hence a zero
object.

2.2. Exercise. Verify the above assertion regarding the coincidence of finite prod-
ucts and coproducts in additive categories.

2.3. Let B be another additive category. An additive functor A→ B is a functor
F such that F (f + g) = F (f) + F (g) for all morphisms f, g ∈ A.

3. Abelian categories

3.1. An additive category is abelian if it possesses all kernels, cokernels and if
every monomorphism is the kernel of some morphism and every epimorphism is
the cokernel of some morphism. Note: to make sense of this previous sentence you
need to recall/formulate the notion of epimorphisms, monomorphisms, kernels and
cokernels in an additive category (see the previous week’s notes).

3.2. Exercise. Give an example of an additive category that is not abelian.
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3.3. Let A be an abelian category. A sequence of maps X0
f0−→ X1

f1−→ · · · fn−→
Xn+1, in A, is an exact sequence if the image of fi is equal to the kernel of fi+1 for
each 0 ≤ i < n. An exact sequence 0 → X → Y → Z → 0 is also referred to as a
short exact sequence.

3.4. Let B be another abelian category. A functor F : A → B is left exact if for
each exact sequence 0 → X → Y in A, the sequence 0 → F (X) → F (Y ) is exact
in B. Similarly, F is right exact if for each exact sequence X → Y → 0 in A, the
sequence F (X)→ F (Y )→ 0 is exact in B. The functor F is exact if it is both left
and right exact.

3.5. The Grothendieck group K0(A) of an abelian category A is the free abelian
group on symbols [X], X ∈ A, modulo the relation [X] = [X1]+ [X2] for each short
exact sequence 0 → X1 → X → X2 → 0. Consequently, if X• = · · · → Xi → · · ·
is a bounded complex in A, then

∑
i(−1)i[Xi] =

∑
i(−1)i[Hi(X•)] in K0(A). If

F : A → B is an exact functor between abelian categories, then the map [X] 7→
[F (X)] is a group homomorphism K0(A)→ K0(B).

3.6. Let {Li} be a set of objects in A such that the classes [Li] comprise a basis
of K0(A). Then for M ∈ A, we write [M : Li] for the coefficient of Li when [M ] is
expanded in terms of the basis {[Li]}, i.e., [M ] =

∑
i[M : Li][Li].

3.7. A simple object or an object of length one is an object L ∈ A such that any
monomorphism A → L is either 0 or an isomorphism. For n ≥ 2, objects of length
n are inductively defined to be those objects X that fit into an exact sequence
0 → X ′ → X → L → 0, with X ′ of length n − 1 and L simple. If every object in
A has finite length, then the Jordan-Hölder theorem holds in A, i.e., for an object
X ∈ A, the length of X is well defined and the simple objects that occur in a
‘composition series’ of X are unique up to isomorphism and permutation.

3.8. Exercise. Let Vect be the category of finite dimensional vector spaces over
some fixed field k. What are the simple objects in Vect? What is K0(Vect)?

3.9. Exercise. Same questions as the previous exercise but replace Vect with the
category of all vector spaces over k.

4. Adjoint functors

4.1. Let f∗ : A→ B and f∗ : B→ A be functors. An adjunction (f∗, f∗) between
f∗ and f∗ is the data of two natural transformations ε : f∗f∗ → idA and η : idB →
f∗f
∗ such that the compositions

f∗
η1f∗−−−→ f∗f

∗f∗
1f∗ε−−−→ f∗ and f∗

1f∗η
−−−→ f∗f∗f

∗ ε1f∗
−−−→ f∗ (4.1.1)

are equal to the identity on f∗ and f∗, respectively. The morphisms η and ε are the
unit and counit of the adjunction respectively.

4.2. An adjunction gives an isomorphism, functorial in A ∈ A and B ∈ B:

αA,B : HomA(f∗B,A)
∼−→HomB(B, f∗A), φ 7→ 1f∗φ ◦ ηB .

The inverse is given by ψ 7→ εA ◦ 1f∗ψ. Conversely, such a functorial isomorphism

αA,B provides an adjunction (f∗, f∗). Namely, set εA = α−1A,f∗A(idf∗A) and ηB =

αf∗B,B(idf∗B).
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4.3. If (f∗, f∗) is an adjunction, then the functor f∗ is said to be left adjoint to
f∗ and the functor f∗ is said to be right adjoint to f∗.

4.4. Exercise. Let For: Ab → Set be the functor that associates to a group its
underlying set. Let Free: Set→ Ab be the functor that associates to a set the free
abelian group generated by it. Show that Free is left adjoint to For.

4.5. Exercise. Let F : A → B be an additive functor between abelian categories.
Suppose a left adjoint for F exists. Then show that F is left exact.

4.6. Exercise. Same question as the previous exercise but replace ‘left’ everywhere
by ‘right’.

5. Back to topology: Borsuk-Ulam

5.1. Lemma. Let f : S1 → S1 be a map such that f(−x) = −f(x) for all x ∈ S1.
Then the degree of f is odd.

5.2. Exercise. Prove this! Hint: To get some intuition, it might help to remember
that morally ‘degree = winding number = number of times the map runs around
the circle’.

5.3. Exercise. Let f : S1 → S1 be a map such that f(−x) = f(x) for all x ∈ S1.
Prove that the degree of f is even.

5.4. Problem. Let f : Sn → Sn be a map such that f(−x) = −f(x) for all x ∈ Sn.
Prove that the degree of f is odd.

5.5. Problem. Let f : Sn → Sn be a map such that f(−x) = f(x) for al x ∈ Sn.
Prove that the degree of f is even.

5.6. Lemma. There is no continuous map f : S2 → S1 such that f(−x) = −f(x)
for all x ∈ S2.

Proof. By way of contradiction assume that f : S2 → S1 is a map such that f(−x) =
−f(x) for all x ∈ S2. Define

g : D2 → S1,

(x, y) 7→ f(x, y,
√

1− x2 − y2).

Restricting g to ∂D2 = S1 we obtain a map h : S1 → S1 that satisfies h(−z) =
−h(z) for all z ∈ S1. The previous lemma implies that the degree of h is odd. But
this is absurd, since h factors thorugh g and hence must have degree 0. �

5.7. Proposition (Borsuk-Ulam). Let f : S2 → R2 be a map. Then there exists
x ∈ S2 such that f(−x) = f(x).

Proof. Assume otherwise. Then the map

g : S2 → S1,

x 7→ f(x)− f(−x)

|f(x)− f(−x)|
,

satisfies g(−x) = −g(x). This contradicts the previous lemma. �

5.8. Remark. So there are always two antipodal points on the earth with the same
temperature and humidity (assuming that the temperature and humidity are con-
tinuous functions of location).

5.9. Exercise. Formulate and prove the higher dimensional analogue of Borsuk-
Ulam.
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5.10. Exercise. Does Borsuk-Ulam hold for the torus? That is, if f : S1×S1 → R2

is a map, then must there exist (x, y) ∈ S1 × S1 such that f(−x,−y) = f(x, y)?
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