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1. Some practice with exact sequences

1.1. Exercise. Suppose
0→ Z→ A→ Z→ 0

is an exact sequence of abelian groups. What can you say about A?

1.2. Exercise. Suppose
0→ A→ Z→ Z→ 0

is an exact sequence of abelian groups. What can you say about A?

1.3. Exercise. Suppose
0→ Z→ Z→ A→ 0

is an exact sequence of abelian groups. What can you say about A?

1.4. Exercise. Suppose

0→ A→ Z→ Z→ Z→ 0

is an exact sequence of abelian groups. What can you say about A?

1.5. Exercise. Suppose

0→ Z→ A→ Z→ Z→ 0

is an exact sequence of abelian groups. What can you say about A?

1.6. Exercise. Suppose

0→ Z→ Z→ A→ Z→ 0

is an exact sequence of abelian groups. What can you say about A?

1.7. Exercise. Suppose

0→ Z→ Z→ Z→ A→ 0

is an exact sequence of abelian groups. What can you say about A?

1.8. Exercise. Suppose
0→ A→ Z→ B → 0

is an exact sequence of abelian groups. What can you say about A and B?

1.9. Exercise. Suppose
0→ A→ B → Z→ 0

is an exact sequence of abelian groups. What can you say about A and B?
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1.10. Exercise. Suppose
0→ Z→ A→ B → 0

is an exact sequence of abelian groups. What can you say about A and B?

1.11. Exercise. Suppose

0→ A→ Z→ Z→ B → 0

is an exact sequence of abelian groups. What can you say about A and B?

1.12. Exercise. Suppose

0→ Z→ A→ Z→ B → 0

is an exact sequence of abelian groups. What can you say about A and B?

1.13. Exercise. Suppose

0→ Z→ Z→ A→ B → 0

is an exact sequence of abelian groups. What can you say about A and B?

1.14. Exercise. Suppose

0→ A→ B → Z→ Z→ 0

is an exact sequence of abelian groups. What can you say about A and B?

1.15. Exercise. Suppose

0→ Z→ A→ B → Z→ 0

is an exact sequence of abelian groups. What can you say about A and B?

1.16. Exercise. Compute the kernel and cokernel of the following maps of abelian
groups

Z⊕ Z

“
id −id
id −id

”
−−−−−−→ Z⊕ Z, Z⊕ Z

“
id id
−id −id

”
−−−−−−−→ Z⊕ Z.

The meaning of the ‘matrix’ notation above should be clear from the following ex-
amples. Suppose f, g : Z→ Z are group homomorphisms, then

Z

“
f
g

”
−−−→ Z⊕ Z is the map a 7→ (f(a), g(a)),

Z⊕ Z
( f g )−−−−→ Z is the map (a, b) 7→ f(a) + g(b),

Z⊕ Z

“
f id
−id g

”
−−−−−−→ Z⊕ Z is the map (a, b) 7→ (f(a) + b,−a + g(b)).

2. Limits and colimits

2.1. Let I be a small category (i.e., the objects of I form a set as opposed to just
a class). Let C be any category. An I-shaped diagram in C is a functor D : I → C.
A morphism D → D′ of I shaped diagrams is a natural transformation, and we
have the category CI of I-shaped diagrams in C. Every object X of C determines
the constant diagram X that sends each object of I to X and sends each morphism
of I to idX . A cone of an I-shaped diagram D is an object X of C together with a
morphism of diagrams X → D. The limit, denoted lim←−D is a universal (final) cone
of D. That is, if f : Y → D is a cone of the diagram D, then there is a unique map
g : Y → lim←−D such that f = i ◦ g, where i : lim←−D → D is the diagram morphism
part of the data of the cone lim←−D.
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2.2. The dual notion, obtained by reversing all the arrows in the definition of a
limit, is that of colimit of a diagram D, denoted lim−→D. That is, one defines a cocone
as an object X of C together with a morphism of diagrams D → X. Then the colimit
is a universal (initial) cocone of D: if f : D → Y is a cocone of the diagram, then
there is a unique map g : lim−→D → Y such that f = g ◦ i, where i : D → lim−→D is
the diagram morphism part of the data of the cocone lim−→D.

2.3. Limits and colimits, if they exist, are unique up to canonical isomorphism.

2.4. Example. Let I be the category

• •
where a ‘•’ denotes an object and the morphisms are the identity morphisms plus
the arrows shown (composition given in the obvious way). Then limits indexed by
I are called products. For instance, a product in the category of sets is the usual
cartesian product. Colimits indexed by I are called coproducts. In the category of
sets coproducts are given by disjoint unions.

2.5. Example. Let I be the empty category. A limit indexed by I is called an initial
object. A colimit indexed by I is called a final object. In the category of sets the
empty set is the initial object and the one point set is the final object. If a category
has an initial and final object and both of these coincide then we call the object
a zero object. Suppose C is a category with a zero object 0 (often such categories
are called pointed). Then, by definition, there is a unique map X → 0 for each
X ∈ C. Similarly, there is a unique map 0 → X for each X ∈ C. The composition
X → 0 → X is called the zero map. For instance, this notion corresponds to the
usual one for the category of abelian groups.

2.6. Exercise. Compute the colimits (if they exist) of the following diagrams in
Top and in hTop:

S1

��

// D2

D2

S1

��

// pt

D2

S1

��

// pt

pt

where S1 → D2 is the inclusion of S1 as the boundary of D2 and S1 → pt is the
obvious map.

2.7. Exercise. Let i : A ↪→ X be the inclusion of a subspace. Compute the colimit
of the following diagram in Top

A
i

//

��

X

pt

What about the colimit of this same diagram in hTop?

2.8. Exercise. Let Vect be the category of vector spaces over some fixed field k.
Compute the limits and colimits (if they exist) of the following diagrams in Vect:

U //

��

V

W

U

��

V // W

2.9. Exercise. Compute the limits and colimits (if they exist) of the diagrams in
the previous exercise, but this time assume that the diagrams are in Ab.
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2.10. Exercise. Compute the limits and colimits (if they exist) of the diagrams in
the previous exercise, but this time assume that the diagrams are in Top.

2.11. Exercise. Compute the limits and colimits (if they exist) of the diagrams in
the previous exercise, but this time assume that the diagrams are in hTop.

2.12. Exercise. Formulate the notions of kernels, cokernels and images of a map
(of abelian groups and/or vector spaces) in terms of limits and colimits.

2.13. Problem. Do all limits and colimits exist in the following categories: Top,
hTop, Ab?

2.14. Problem. There is an obvious functor Top → hTop. Hence, we may view
the Hqs as either functors Top→ Ab or as functors hTop→ Ab. Do the functors
Hq : Top → Ab send limits to colimits and send limits to colimits? What about
if we ask the same question but with ‘Top’ in the previous sentence replaced with
‘hTop’?

3. Degree

3.1. Let f : Sn → Sn be a map. Then the endomorphism f∗ : H̃n(Sn)→ H̃n(Sn)
may be identified with an integer, deg(f), called the degree of f . Certainly:

(i) deg(id) = 1;
(ii) deg(fg) = deg(g) · deg(f);
(iii) if f is homotopic to g, then deg(f) = deg(g);
(iv) if f is not surjective, then deg(f) = 0;
(v) if f is a homotopy equivalence, then deg(f) = ±1.

3.2. Proposition. Define

fn : Sn → Sn, (x1, . . . , xn+1) 7→ (−x1, x2, . . . , xn+1).

Then deg(f) = −1.

Proof. Proceed by induction on n. The statement is easy to check for n = 0. Assume
n > 0. Let D1 and D2 be the complement of the north pole and the south pole
respectively. Then f(Di) ⊆ Di. Let i : Sn−1 ↪→ D1 ∩ D2 be the inclusion of the
equator. Then i is a homotopy equivalence and using the Mayer-Vietoris sequence
we obtain a commutative diagram:

H̃n−1(Sn−1) H̃n−1(D1 ∩D2)∼
i∗

oo
∼
δ

// H̃n(Sn)

H̃n−1(Sn−1)

f∗n−1

OO

H̃n−1(D1 ∩D2)∼
i∗

oo

f∗n

OO

∼
δ

// H̃n(Sn)

f∗n

OO

Here all the horizontal arrows are isomorphisms. The result follows. �

3.3. Exercise. Why does the result follow from the commutative diagram?

3.4. Exercise. Prove the n = 0 case.

3.5. Proposition. Define

s : Sn → Sn, (x1, . . . , xn+1) 7→ (x1, . . . , xi−1,−xi, xi+1, . . . , xn+1).

Then deg(s) = −1.

Proof. Let h : Sn → Sn be the map that interchanges the first and the i-th coor-
dinate. As h is a homeomorphism, deg(h) = ±1. Further, s = h−1fnh, where fn is
as in the previous Proposition. So deg(s) = deg(h−1fnh) = deg(fn). �
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3.6. Let X be a space. Recall that the (unreduced) suspension, SX, is the space
obtained by collapsing X×{0} ⊂ X×I and X×{1} ⊂ X×I to (distinct) points. Let
f : X → Y be a map. Define Sf : SX → SY by (x, a) 7→ (f(x), a). If f is homotopic
to g, then Sf is homotopic to Sg. Hence, we obtain a functor S : hTop→ hTop.

3.7. Proposition. Let f : Sn → Sn be a map. Then deg(Sf) = deg(f).

Proof. Exactly the same as that of Proposition 3.2. �

3.8. The antipode map α : Sn → Sn is given by x 7→ −x.

3.9. Proposition. deg(α) = (−1)n+1.

Proof. The map α is the composition of n + 1 maps of degree −1. So the result
follows from Proposition 3.2. �

3.10. Proposition. Let f, g : Sn → Sn be maps such that f(x) 6= g(x) for all x.
Then f is homotopic to αg, where α : Sn → Sn is the antipode map.

Proof sketch. As f(x) 6= g(x), the line joining f(x) and−g(x) does not pass through
the origin. Projecting this line out from the origin to the sphere gives the desired
homotopy. �

3.11. Exercise. Make this proof precise by explicitly giving the homotopy.

3.12. Corollary. Let f : S2n → S2n be a map. Then there is some x ∈ S2n such
that f(x) = ±x.

Proof. Let α : S2n → S2n be the antipode map. Suppose f(x) 6= x for all x. Then f
is homotopic to α. Similarly, if f(x) 6= −x for all x, then f is homotopic to α2 = id.
But deg(α) = −1 6= deg(id). In particular, α is not homotopic to the identity. The
result follows. �

3.13. Let X and Y be spaces with chosen basepoints x ∈ X and y ∈ Y . Then the
wedge of X and Y , denoted X ∨ Y , is the space obtained by identifying x and y in
X t Y .

3.14. Exercise. Express X ∨ Y as a limit or a colimit in Top.

3.15. Exercise. Show that under ‘reasonable assumptions on the points x and y’,
there is a canonical isomorphism

H̃q(X ∨ Y ) ' H̃q(X)⊕ H̃q(Y ).

Is the above statement true if we replaced reduced cohomology with unreduced coho-
mology?

3.16. Let U1, . . . , Uk be disjoint open sets in Sn each homeomorphic to Rn. Let
f : Sn → Y be a map that maps Sn−

⋃
i Ui to a point y ∈ Y . Collapsing Sn−

⋃
j Uj

to a point gives a space homeomorphic to the k-fold wedge of n-spheres. It follows
that f factors as

Sn g−→ Sn ∨ · · · ∨ Sn h−→ Y,

where the wedge sum has k terms. Let

ij : Sn ↪→ Sn ∨ · · · ∨ Sn and pj : Sn ∨ · · · ∨ Sn → Sn

be the inclusion of, and the projection on, the j-th factor respectively. Using the
Mayer-Vietoris sequence one deduces(

i∗1
...
i∗k

)
: H̃∗(Sn ∨ · · · ∨ Sn) ∼−→ H̃∗(Sn)⊕ · · · ⊕ H̃∗(Sn)
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is an isomorphism. Its inverse is given by

( p∗1 ··· p∗k ) : H̃∗(Sn)⊕ · · · ⊕ H̃∗(Sn) ∼−→ H̃∗(Sn ∨ · · · ∨ Sn).

Let gj = pjg, hj = hij and fj = hjgj . Then

f∗ = g∗h∗ = g∗

∑
j

p∗j i
∗
j

h∗ =
∑

j

f∗j .

Hence, if Y = Sn, then deg(f) =
∑

j deg(fj). Note that fj is f on Uj and maps
the complement to y.

3.17. Proposition. View S1 as a subspace of C. Let k ∈ Z. Define f : S1 → S1,
z 7→ zk. Then deg(f) = k.

Proof sketch. It suffices to assume k ≥ 0. The case k = 0 is obvious, so assume
k > 0. We use the notation in the above discussion. Divide S1 into k open arcs
of equal length (these are the Uj above). Now fj stretches the corresponding arc
by a factor of k (in the same direction), wraps it around the circle and maps the
complement to a point. Each fj is homotopic to the identity. The result follows. �

3.18. Exercise. Why does it suffice to assume k ≥ 0?

3.19. Exercise. Make the above proof precise by explicitly defining the arcs and
giving explicit homotopies between the fj and the identity map.

3.20. Exercise. For n 6= 0, construct maps Sn → Sn of arbitrary degree.

3.21. Exercise. Either construct a surjective map S1 → S1 of degree 0 or show
that no such map can exist.
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