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1. Categories and functors

1.1. Algebraic topology concerns mappings from topology to algebra. The appro-
priate language is that of categories and functors.

1.2. A category C consists of a collection of objects, a set HomC(A,B) of mor-
phisms for any two objects A,B ∈ C, an identity morphism idA ∈ HomC(A,A) for
each object A ∈ C (usually abbreviated to id), and a composition law

◦ : HomC(B,C)×HomC(A,B) → HomC(A,C)

for each triple of objects A,B, C ∈ C. Composition is required to be associative and
identity morphisms are required to behave as their name indicates:

f ◦ (g ◦ h) = (f ◦ g) ◦ h, f ◦ id = f and id ◦ f = f

whenever the specified compositions make sense.

1.3. Remark. The subscript ‘C’ is often omitted from ‘HomC’ if there is no chance
of confusion (and by some authors even if there is). Further, the composition f ◦ g
is often just written fg.

1.4. A morphism f ∈ HomC(A,B) is called an isomorphism if there exists a
morphism g ∈ HomC(B,A) such that fg = id and gf = id.

1.5. Example. Set is the category of sets with morphisms given by maps of sets.
Isomorphisms in this category are bijective maps.

1.6. Example. Ab is the category of abelian groups with morphisms given by
group homomorphisms. Isomorphisms in this category are group homomorphisms
that are injective and surjective as maps of the underlying sets.

1.7. A functor F : C → D between two categories C and D is a rule that assigns
to each object A ∈ C an object F (A) ∈ D, to each morphism f : A → B in C a
morphism F (f) : F (A) → F (B) in D in such a way that

F (idA) = idF (A) and F (f ◦ g) = F (f) ◦ F (g).

More precisely, this is a covariant functor. A contravariant functor reverses the
direction of morphisms, so that F sends f : A → B to F (f) : F (B) → F (A) and
satisfies F (f ◦ g) = F (g) ◦ F (f).
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1.8. A natural transformation α : F → G between functors F,G : C → D is the
data of a morphism αA : F (A) → G(A), for each A ∈ C, such that the following
diagram commutes for each morphism f : A → B in C:

F (A)

F (f)

��

αA
// G(A)

G(f)

��

F (B)
αB

// G(B)

The notion of natural isomorphism is formulated in the obvious way. The functors
F and G are said to be equivalent if there exists a natural isomorphism F

∼−→ G. A
functor F : C → D is said to be an equivalence of categories if there exists a functor
G : D → C such that FG : D → D and GF : C → C are equivalent to the identity
functor on D and C respectively.

1.9. Example. Let Vectk be the category of vector spaces over some field k with
morphisms being linear transformations. Define a contravariant functor ∗ : Vectk →
Vectk by assigning to a vector space V its linear dual V ∗ and assigning to a
linear map f : V → W the map f∗ : W ∗ → V ∗ given by (f∗φ)(v) = φ(f(v)),
φ ∈ W ∗, v ∈ V . Then we obtain a natural transformation from the identity functor
on Vectk to ∗∗ by mapping a vector v ∈ V to evalv ∈ V ∗∗, where evalv is defined by
evalv(φ) = φ(v), φ ∈ V ∗. If instead of all vector spaces we consider the category of
finite-dimensional vector spaces, then this natural transformation is an isomorphism
and this functor of ‘taking the dual’ is an equivalence.

1.10. Remark. The terms ‘natural’, ‘functorial’ and ‘canonical’ will be used inter-
changeably with ‘a natural transformation of functors’. Thanks to the laziness of
the author, often the functors in question will not be explicitly specified, they will
be ‘obvious’ from the context.

1.11. Exercise. Open your favorite linear algebra textbook, find all instances of the
terms ‘natural’ and ‘canonical’. Reconcile the usage of these terms with the remark
above.

1.12. Exercise. Open your favorite (or least favorite) textbook on algebraic (or
differential) geometry. Find all instances of the terms ‘natural’ and ‘canonical’.
Reconcile the usage of these terms with the remark above.

2. Exact sequences

2.1. In this section ‘module’ = ‘module over some fixed ring’ and ‘map’ = ‘module
homomorphism’. Not much will be lost if the reader equates ‘module’ with ‘abelian
group’ and ‘map’ with ‘group homomorphism’.

2.2. A sequence of modules and maps

· · · fi−1−−−→ M i fi−→ M i+1 fi+1−−−→ · · ·

is said to be exact at M i if im(fi−1) = ker(fi). The sequence is exact if it is exact
at each M i.

2.3. Example. 0 → M ′ f−→ M is exact if and only if f is injective.

2.4. Example. M
g−→ M ′′ → 0 is exact if and only if g is surjective.

2.5. Example. A sequence

0 → M ′ f−→ M
g−→ M ′′ → 0
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is exact if and only if f is injective, g is surjective and g induces an isomorphism
of coker(f) = M/im(f) onto M ′′. Such an exact sequence is called a short exact
sequence.

3. Conventions and notation regarding topological spaces

3.1. A space will always mean a topological space and a map between spaces will
always mean a continuous map. The category of spaces and maps will be denoted
Top.

3.2. The real numbers will be denoted by R and the complex numbers by C. Some
standard spaces that we will use are:

• The one point space: pt consisting of a single point.
• Euclidean n-space: Rn with the usual metric.
• The n-disk: Dn = {(x1, . . . , xn) ∈ Rn |x2

1 + · · ·+ x2
n ≤ 1}.

• The n− 1-sphere: Sn−1 = {(x1, . . . , xn) ∈ Rn |x2
1 + · · ·+ x2

n = 1}. We will
also need the following alternate models for spheres: Sn−1 is the boundary
∂Dn of the n-disk in Rn; Sn+1 is the quotient Dn/∂Dn; the 1-sphere (or
circle) is S1 = {z ∈ C | |z| = 1}.

• The unit interval: I = [0, 1] ⊂ R. Note that I = D1.

3.3. Let i : A ↪→ X be the inclusion of a subspace. A retraction of X to A is a
map r : X → A such that ri = id. If such a retraction exists, then we say that X
retracts to A.

3.4. Example. Let x ∈ X. Then X retracts to x.

3.5. A homotopy is a map h : X×I → Y . Write h0 for the map X → Y , x 7→ h(x, 0)
and h1 for the map X → Y , x 7→ h(x, 1). Then we say that h is a homotopy between
h0 and h1. A map f : X → Y is said to be homotopic to g : X → Y if there exists
a homotopy h : X × I → Y such that f = h0 and g = h1. This is an equivalence
relation on maps X → Y . We will write hTop for the category with objects spaces
and morphisms homotopy equivalence classes of maps.

3.6. Two spaces are homotopy equivalent if they are isomorphic in hTop. That
is, X is homotopy equivalent to Y if there exist maps f : X → Y and g : Y → X
such that fg and gf are homotopic to the identity on Y and X respectively. We
say that f and g are homotopy equivalences. If a space is homotopy equivalent to
pt, then it is called contractible.

3.7. Let i : A ↪→ X be the inclusion of a subspace. A deformation retract from X
to A is a retraction r : X → A such that ir is homotopy equivalent the identity on
X. A deformation retract is a homotopy equivalence.

3.8. Let X be a space. A path from a point x ∈ X to a point y ∈ X is a map
f : [0, 1] → X such that f(0) = x and f(1) = y. This defines an equivalence
relation on points of X. The corresponding equivalence classes are called the path
components of X. The path components are precisely the homotopy equivalence
classes of maps pt → X. For x ∈ X we write [x] for the corresponding path
component.
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3.9. The set of path components of a space X, denoted π0(X), is the most intu-
itively obvious invariant of X. In fact, it is a homotopy invariant: if X is homotopy
equivalent to Y , then π0(X) ' π0(Y ). The fundamental group π1(X), and more
generally the higher homotopy groups πn(X), are higher dimensional analogues of
π0(X). Unfortunately, homotopy groups can be extremely hard to compute (to this
day we do not have complete information about the homotopy groups of spheres).
Homology and cohomology groups are a different higher dimensional analogue of
π0(X). They are harder to define than homotopy groups, but are comparatively
easier to compute.

4. (Co)homology

4.1. Let H0(X) be the free abelian group on the set of path components of X.
Given a map f : X → Y define H0(f) : H0(X) → H0(Y ) by extending the assign-
ment [x] 7→ [f(x)] on path components linearly. By a standard abuse of notation,
we write f∗ instead of H0(f). The map f∗ : H0(X) → H0(Y ) only depends on the
homotopy class of f . In other words, we have a functor

H0 : hTop → Ab.

The group H0(X) is called the zeroth homology group of X.

4.2. Let H0(X) be the group of homomorphisms H0(X) → Z. Given a map
f : X → Y define f∗ : H0(Y ) → H0(X) by f∗ϕ([x]) = ϕ(f∗[x]), ϕ ∈ H0(Y ),
[x] ∈ H0(X). So we have a contravariant functor

H0 : hTop → Ab.

4.3. Exercise. Let A,B ⊆ X be open subsets that cover X. Let α : A ∩ B ↪→ A,
β : A ∩ B ↪→ B, a : A ↪→ X and b : ↪→ X be the inclusion maps. Are either of the
following sequences exact? Prove or find counterexamples.

0 → H0(A ∩B)

“ α∗
−β∗

”
−−−−−→ H0(A)⊕H0(B)

( a∗ b∗ )−−−−−→ H0(X) → 0,

0 → H0(X)

“
a∗

b∗

”
−−−−→ H0(A)⊕H0(B)

( α∗ −β∗ )−−−−−−→ H0(A ∩B) → 0.

4.4. Problem. Same question as the previous exercise but assume that X is simply
connected.

4.5. Theorem. For q ∈ Z≥1, there exist (contravariant) functors Hq : hTop → Ab
together with canonical maps δ : Hq−1(A∩B) → Hq(X), where A,B ⊆ X are open
subsets that cover X, such that:

(i) Hq(pt) = 0 for all n 6= 0;
(ii) if α : A ∩ B ↪→ A, β : A ∩ B ↪→ B, a : A ↪→ X and b : B ↪→ X are the

inclusion maps, then the following sequence is exact for all q ∈ Z≥0:

· · · δ−→ Hq(X)

“
a∗

b∗

”
−−−−→ Hq(A)⊕Hq(B)

( α∗ −β∗ )−−−−−−→ Hq(A ∩B) δ−→ Hq+1(X) → · · ·

(iii) if X is the disjoint union of a set of spaces Xi, then the inclusions Xi ↪→ X

induce an isomorphism Hq(X) ∼−→
∏

i Hq(Xi) for all q.
Here, by convention we are writing f∗ instead of Hq(f).

Proof. Postponed. �

4.6. Remark. The exact sequence above is called the Mayer-Vietoris sequence as-
sociated to A and B.
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4.7. There is an analogous statement for homology:

4.8. Theorem. For q ∈ Z≥1, there exist functors Hq : hTop → Ab together with
canonical maps ∂ : Hq(X) → Hq−1(A ∩ B), where A,B ⊆ X are open subsets that
cover X, such that:

(i) Hq(pt) = 0 for all q 6= 0;
(ii) if α : A ∩ B ↪→ A, β : A ∩ B ↪→ B, a : A ↪→ X and b : B ↪→ X are the

inclusion maps, then the following sequence is exact for all q ∈ Z≥0

∂−→ Hq+1(A ∩B)

“ α∗
−β∗

”
−−−−−→ Hq+1(A)⊕Hq+1(B)

( a∗ b∗ )−−−−−→ Hq+1(X) ∂−→ · · ·
(iii) if X is the disjoint union of a set of spaces Xi, then the inclusions Xi ↪→ X

induce an isomorphism
⊕

i Hq(Xi)
∼−→ Hq(X) for all q.

Here, by convention we are writing f∗ = H(f) for a map f .

Proof. Postponed. �

4.9. Exercise. In view of Remark 1.10, the maps δ and ∂ are natural transforma-
tions between some functors. Which functors?

4.10. Remark. The formalism of cohomology and homology is very similar. However,
it will eventually turn out that cohomology has additional structure that homology
doesn’t. So I will focus on cohomology. It is a running exercise to appropriately
reformulate all statements that follow for homology.

4.11. Example. As Rn is contractible, we have

H∗(Rn) = H∗(pt).

4.12. Exercise. Let A ⊆ X be a subspace and let i : A ↪→ X be the inclusion map.
Suppose A is a retract of X. Show that i∗ : H∗(X) → H∗(A) is surjective. Further,
show that if X deformation retracts to A then i∗ is an isomorphism.

4.13. Exercise. Show that if we assume that the product in Theorem 4.5 (iii) is
finite, then the statement of Theorem 4.5 (iii) follows from the existence of the
Mayer-Vietoris sequence.

4.14. It is sometimes convenient to consider a minor variant of cohomology: let X
be a space and let ε : X → pt be the obvious map. Define the reduced cohomology
groups of X by:

H̃q(X) = coker(ε∗ : Hq(pt) → Hq(X)).
As Hq(pt) is trivial for all q 6= 0, we have

Hq(X) = H̃q(X) for q 6= 0 and H0(X) ' H̃0(X)⊕ Z.

4.15. Exercise. With the notation of Theorem 4.5, prove that if A∩B is not empty,
then the Mayer-Vietoris sequence induces an exact sequence

· · · δ−→ H̃q(X)

“
a∗

b∗

”
−−−−→ H̃q(A)⊕ H̃q(B)

( α∗ −β∗ )−−−−−−→ H̃q(A ∩B) δ−→ H̃q+1(X) → · · ·
4.16. Exercise. Suppose X is the union of open sets U1, . . . , Un such that each
intersection Ui1 ∩· · ·∩Uik

is either empty or has trivial reduced cohomology groups.
Show that H̃i(X) = 0 for i ≥ n− 1.

4.17. Example. Let D1, D2 ⊂ Sn be the complements of the north and south pole
respectively. Then D1 ∩D2 deformation retracts to the equator. As D1 and D2 are
contractible and D1∩D2 is homotopy equivalent to Sn−1, using the Mayer-Vietoris
sequence we infer H̃q(Sn) ' H̃q−1(Sn−1). It follows

H̃q(Sn) =

{
Z if q = n;
0 otherwise.
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4.18. Let’s record some consequences of these computations. We claim that Rn

is not homeomorphic to Rm for m 6= n. Assume otherwise, then Rn − {x} is
homeomorphic to Rm−{y} (for appropriate points x and y). But the former space
is homotopy equivalent to Sn−1 and the latter to Sm−1. The spaces Sn−1 and
Sm−1 have different cohomology groups for m 6= n. This contradicts the homotopy
invariance of cohomology.

4.19. The sphere Sn = ∂Dn+1 is not a retract of the disk Dn+1. As otherwise we
would obtain a surjective map H∗(Dn+1) � H∗(Sn) which is clearly impossible.
This further implies:

4.20. Theorem (Brouwer fixed point theorem). Every map f : Dn+1 → Dn+1 has
a fixed point, i.e., there exists x ∈ Dn+1 such that f(x) = x.

Proof. Assume otherwise. Then for each x ∈ Dn+1 there is a unique line `x passing
through x and f(x). This line `x meets Sn = ∂Dn+1 in exactly two points. Sliding
x along `x towards f(x) retracts Dn+1 onto Sn. This is a contradiction. �

4.21. Exercise. Explicitly give the retraction mentioned in the proof.

4.22. Exercise. The (unreduced) suspension of a space X is the space SX obtained
by collapsing X×{0} ⊂ X× I and X×{1} ⊂ X× I to (distinct) points. Show that

H̃q(SX) ' H̃q−1(X).

4.23. Exercise. Show that

Hq(S1 × S1) =


Z if q = 0, 2;
Z⊕ Z if q = 1;
0 otherwise.

4.24. Exercise. Construct a canonical isomorphism

Hq(X × Sn) ' Hq(X)⊕Hq−n(Sn)

for all q and n, where Hq = 0 for q < 0 by definition.
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