GENERATION AND EQUIVALENCES IN ABELIAN AND TRIANGULATED CATEGORIES

R. VIRK

We will not worry about any kind of set theoretical issues when dealing with categories. We will assume that we remain in a given universe or, as put in [GeMa, p. 38], 'that all the required hygiene regulations are obeyed'.

We will denote the category of sets by **Set**. Unless stated otherwise, all functors will tacitly be covariant.

0.1. Preliminaries. Let us recall the notion of a fully faithful functor. Let \mathcal{A} and \mathcal{B} be two categories. A functor $F : \mathcal{A} \to \mathcal{B}$ is *full* if for any two objects $A, B \in \mathcal{A}$ the induced map

$$F : \operatorname{Hom}(A, B) \to \operatorname{Hom}(F(A), F(B))$$

is surjective. The functor F is called *faithful* if this map is injective for all $A, B \in \mathcal{A}$.

Proposition 0.1. Let $F : \mathcal{A} \to \mathcal{B}$ be a fully faithful functor. Then F is an equivalence if and only if every object $B \in \mathcal{B}$ is isomorphic to an object of the form F(A) for some $A \in \mathcal{A}$.

Proof. We define an inverse functor F^{-1} as follows: for each $B \in \mathcal{B}$, choose an object $A_B \in \mathcal{A}$ together with an isomorphism $\varphi_B : F(A_B) \xrightarrow{\sim} B$. Then, set $F^{-1}(B) = A_B$ and for $f : B_1 \to B_2$, $F^{-1}(f)$ is given by applying the inverse of the bijection

$$F: \operatorname{Hom}(A_{B_1}, A_{B_2}) \xrightarrow{\sim} \operatorname{Hom}(F(A_{B_1}), F(A_{B_2}))$$

to $\varphi_{B_2}^{-1} \circ f \circ \varphi_{B_1}$. The isomorphisms $FF^{-1} \simeq \mathrm{id}_{\mathcal{B}}$ and $F^{-1}F \simeq \mathrm{id}_{\mathcal{A}}$ are the ones that are naturally induced by the isomorphisms φ_B .

This immediately yields:

Corollary 0.2. Any fully faithful functor $F : \mathcal{A} \to \mathcal{B}$ defines an equivalence between \mathcal{A} and the full subcategory of \mathcal{B} of all objects $B \in \mathcal{B}$ isomorphic to F(A) for some $A \in \mathcal{A}$.

0.2. Yoneda lemma. Given a category \mathcal{A} , let \mathcal{A}^{op} denote the opposite category. We let Funct(\mathcal{A} , **Set**) denote the category of all functors from \mathcal{A} to **Set**. In particular, Funct(\mathcal{A}^{op} , **Set**) is the category of contravariant functors from \mathcal{A} to **Set**. Recall that a functor $F \in \text{Funct}(\mathcal{A}^{op})$ is called *representable* if it is isomorphic to $\text{Hom}(-, \mathcal{A})$ for some $\mathcal{A} \in \mathcal{A}$.

Lemma 0.3 (Yoneda lemma). The functor

$$\Phi: \mathcal{A} \to \operatorname{Funct}(\mathcal{A}^{op}, \operatorname{\mathbf{Set}}),$$
$$A \mapsto \operatorname{Hom}(-, A)$$

defines an equivalence of \mathcal{A} with the full subcategory of representable functors $F \in \text{Funct}(\mathcal{A}^{op})$.

R. VIRK

Proof. In view of the preceding corollary, it suffices to show that Φ is fully faithful. It is clear that Φ is faithful. Let us show that Φ is full. Let φ : Hom $(-, A) \to$ Hom(-, A') be a natural transformation. This gives a map Hom $(A, A) \to$ Hom(A, A'), let ι be the image of id_A under this map. Given $A'' \in \mathcal{A}$ and $f \in$ Hom(A'', A), we claim that $\varphi(f) = \iota \circ f$ (this will certainly prove that Φ is full). Indeed,

$$\varphi(f) = \varphi(f \circ \mathrm{id}_A) = \varphi(\mathrm{id}_A) \circ f = \iota \circ f.$$

This completes the proof.

0.3. Adjoint functors. Given categories \mathcal{A} and \mathcal{B} , an *adjoint pair* (F^*, F) is the following data: functors $F : \mathcal{A} \to \mathcal{B}$ and $F^* : \mathcal{B} \to \mathcal{A}$, along with two natural transformations

$$\varepsilon: F^*F \to \mathrm{id}_\mathcal{A}, \qquad \eta: \mathrm{id}_\mathcal{B} \to FF^*,$$

called the *counit* and *unit* respectively, such that the compositions

$$F \xrightarrow{\eta \circ \mathbb{1}_F} FF^*F \xrightarrow{\mathbb{1}_F \circ \varepsilon} F$$
 and $F^* \xrightarrow{\mathbb{1}_F \circ \eta} F^*FF^* \xrightarrow{\varepsilon \circ \mathbb{1}_{F^*}} F^*$

are equal to the identity maps $\mathbb{1}_F : F \to F$ and $\mathbb{1}_{F^*} : F^* \to F^*$, respectively. Given such an adjoint pair (F^*, F) , there is an isomorphism functorial in $A \in \mathcal{A}$ and $B \in \mathcal{B}$

$$\alpha_{A,B} : \operatorname{Hom}_{\mathcal{A}}(F^*B, A) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{B}}(B, F(A)), \qquad f \mapsto F(f) \circ \eta(B).$$

The inverse is given by $f' \mapsto \varepsilon_F(F^*F(A)) \circ F^*(f')$. Conversely, the data of such a functorial isomorphism provides the structure of an adjoint pair. Namely, set $\varepsilon(F^*F(A)) = \alpha_{A,F(A)}^{-1}(\mathrm{id}_{F(A)})$ and $\eta(B) = \alpha_{F^*(B),B}(\mathrm{id}_{F^*(B)})$. Note that, by construction, we have commutative diagrams

$$\operatorname{Hom}_{\mathcal{B}}(B,B') \xrightarrow{F^{*}} \operatorname{Hom}_{\mathcal{A}}(F^{*}(B),F^{*}(B')) \tag{0.1}$$

$$\downarrow^{\alpha_{F^{*}(B'),B}} \operatorname{Hom}_{\mathcal{B}}(B,FF^{*}(B'))$$

$$\operatorname{Hom}_{\mathcal{A}}(A,A') \xrightarrow{F} \operatorname{Hom}_{\mathcal{B}}(F(A),F(A')) \tag{0.2}$$

$$\operatorname{Hom}_{\mathcal{A}}(F^*F(A), A')$$

Given an adjoint pair (F^*, F) , F^* is said to be *left adjoint* to F and F is said to be *right adjoint* to F^* . The following is a consequence of the Yoneda lemma.

Proposition 0.4. Suppose a fully faithful functor $F : \mathcal{A} \to \mathcal{B}$ admits a left adjoint F^* . Then the counit

$$\varepsilon: F^*F \to \mathrm{id}_{\mathcal{A}}$$

is an isomorphism.

Similarly, if a fully faithful functor $F^*: \mathcal{B} \to \mathcal{A}$ admits a right adjoint F, then the unit

$$\eta : \mathrm{id}_{\mathcal{A}} \to FF^*$$

is an isomorphism.

Proof. Assume F is fully faithful. Then the diagram (0.2) shows that

 $\operatorname{Hom}_{\mathcal{A}}(A, A') \xrightarrow{\circ \varepsilon} \operatorname{Hom}_{\mathcal{A}}(F^*F(A), A')$

is an isomorphism for all $A, A' \in \mathcal{A}$. That is, $\circ \varepsilon : \operatorname{Hom}_{\mathcal{A}}(A, -) \to \operatorname{Hom}_{\mathcal{A}}(F^*F(A), -)$ is an isomorphism in Funct($\mathcal{A}, \mathbf{Set}$). It follows from the Yoneda lemma that $\varepsilon : F^*F(A) \to A$ is an isomorphism.

The proof of the second statement is similar.

Remark 0.5. In short, if (F^*, F) is an adjoint pair, then:

F is fully faithful if and only if $\varepsilon_F : F^* F \xrightarrow{\sim} \operatorname{id}$.

Similarly,

 F^* is fully faithful if and only if $\eta_F : \operatorname{id} \xrightarrow{\sim} FF^*$.

Proposition 0.6. Let (F^*, F) be an adjoint pair of functors $F : \mathcal{A} \to \mathcal{B}, F^* : \mathcal{B} \to \mathcal{A}$ between abelian categories. Then, F is left exact and F^* is right exact.

Proof. Suppose $0 \longrightarrow A \xrightarrow{f} A'$ is exact in \mathcal{A} . Let us show that $0 \longrightarrow F(A) \xrightarrow{F(f)} F(A')$ is exact in \mathcal{B} . By the Yoneda lemma, it suffices to show that

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{B}}(-, F(A)) \xrightarrow{F(f)\circ} \operatorname{Hom}_{\mathcal{B}}(-, F(A'))$$

is exact. Since (F^*, F) is an adjoint pair, for each $B \in \mathcal{B}$ we obtain a commutative diagram

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{B}}(B, F(A)) \xrightarrow{F(f)\circ} \operatorname{Hom}_{\mathcal{B}}(B, F(A'))$$
$$\sim \downarrow \qquad \sim \downarrow$$
$$0 \longrightarrow \operatorname{Hom}_{\mathcal{A}}(F^{*}(B), A) \xrightarrow{f\circ} \operatorname{Hom}_{\mathcal{A}}(F^{*}(B), A').$$

The bottom row of this diagram is exact (as $\operatorname{Hom}_{\mathcal{A}}(F^*(B), -)$ is left exact). This forces the top row to also be exact.

The proof of right exactness of F^* is similar.

Remark 0.7. More generally, given an adjoint pair (F^*, F) (we do not require the functors to be between abelian categories), F^* preserves all colimits and F preserves all limits.

We conclude this subsection with a trivial (but key) observation that is immediate from the defining properties of the unit and the counit.

Lemma 0.8. Let \mathcal{A} and \mathcal{B} be additive categories. Suppose $F : \mathcal{A} \to \mathcal{B}$ is left adjoint to $G: \mathcal{B} \to \mathcal{A}.$

(i) If $X \in \mathcal{A}$ is such that $F(X) \neq 0$, then the unit map $\eta: X \to GF(x)$ is not zero.

(ii) If $Y \in \mathcal{B}$ is such that $G(Y) \neq 0$, then the counit map $\varepsilon : FG(Y) \to Y$ is not zero.

0.4. K_0 of an abelian category. Let \mathcal{A} be an abelian category. Define the *Grothendieck* group, denoted $K_0(\mathcal{A})$, as the free abelian group on symbols [A], $A \in \mathcal{A}$, modulo the relation

$$[A] = [A_1] + [A_2]$$

if there is a short exact sequence

$$0 \to A_1 \to A \to A_2 \to 0$$

R. VIRK

A simple object in an abelian category \mathcal{A} is an object $L \in \mathcal{A}$ such that any monomorphism $A \to L$ is either 0 or an isomorphism (this automatically implies that any morphism $L \to A$ is either 0 or a monomorphism). Simple objects in \mathcal{A} are also called *objects of length one*. For $n \geq 2$, objects of length n are inductively defined to be those objects $A \in \mathcal{A}$ such that there is an exact sequence

$$0 \to A' \to A \to L \to 0$$

with A' of length n-1 and L simple. If every object in \mathcal{A} has finite length, then the Jordan-Höleder theorem holds in \mathcal{A} (with the usual proof), i.e., for an object $A \in \mathcal{A}$ of finite length, the length of A is well defined, and the simple objects that occur in a 'composition series' of A are unique upto isomorphism and permutation. The category of finite dimensional representations of an algebra is the standard example of such a category.

Lemma 0.9. Let \mathcal{A} be an abelian category such that every object in \mathcal{A} has finite length. Let $F, G : \mathcal{A} \to \mathcal{B}$ be exact functors. Suppose $\varepsilon : F \to G$ is a natural transformation which is an isomorphism on simple objects, i.e., $\varepsilon : F(L) \xrightarrow{\sim} G(L)$ for every simple object $L \in \mathcal{A}$. Then $\varepsilon : F \to G$ is an isomorphism.

Proof. We need to show that $\varepsilon : F(A) \xrightarrow{\sim} G(A)$ for each $A \in \mathcal{A}$. Proceed by induction on the length of A. The base case is given by the statement for simple objects. Assume that the claim is true for objects of length < n and suppose that A is of length n. Then we have an exact sequence $0 \to A' \to A \to L \to 0$, with A' of length n - 1 and L simple. This gives a commutative diagram

$$\begin{array}{ccc} 0 \longrightarrow F(A') \longrightarrow F(A) \longrightarrow F(L) \longrightarrow 0 \\ & \varepsilon \Big| \sim & \varepsilon \Big| & \varepsilon \Big| \sim \\ 0 \longrightarrow G(A') \longrightarrow G(A) \longrightarrow G(L) \longrightarrow 0. \end{array}$$

The outer vertical arrows are isomorphisms by the induction hypothesis. This forces $\varepsilon : F(A) \to G(A)$ to also be an isomorphism.

Proposition 0.10. Let \mathcal{A} and \mathcal{B} be abelian categories such that every object in \mathcal{A} and \mathcal{B} has finite length. Let $F : \mathcal{A} \to \mathcal{B}$, $G : \mathcal{B} \to \mathcal{A}$ be functors such that F and G are both left and right adjoint to each other. If F and G induce mutually inverse isomorphisms on Grothendieck groups then, $FG \simeq id_{\mathcal{B}}$ and $GF \simeq id_{\mathcal{A}}$.

Proof. Let $\varepsilon : FG \to id_{\mathcal{B}}$ be the unit morphism of the adjoint pair (F, G). Lets prove that ε is an isomorphism. By Lemma 0.9 it suffices to show that $\varepsilon : FG(L) \to L$ is an isomorphism for every simple object $L \in \mathcal{B}$. Since [FG(L)] = [L] in $K_0(\mathcal{B})$, we infer that $FG(L) \simeq L$. Consequently, we only need to show that $\varepsilon : FG(L) \to L$ is non-zero. But this is immediate from Lemma 0.8.

The proof of $GF \simeq id_{\mathcal{A}}$ is similar.

0.5. Triangulated categories. Let \mathcal{D} be an additive category. The structure of a *triangulated category* on \mathcal{D} is given by the following data:

(i) An additive equivalence $\Sigma : \mathcal{D} \xrightarrow{\sim} \mathcal{D}$. For $X \in \mathcal{D}$ and $n \in \mathbb{Z}$, we will write X[n] instead of $\Sigma^n X$. Further, diagrams of the form

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$$

will be called *triangles*. A commutative diagram of the form

$$\begin{array}{ccc} X & \stackrel{u}{\longrightarrow} Y & \stackrel{v}{\longrightarrow} Z & \stackrel{w}{\longrightarrow} X[1] \\ & & & \downarrow^{g} & & \downarrow^{h} & f^{[1]} \\ X' & \stackrel{u'}{\longrightarrow} Y' & \stackrel{v'}{\longrightarrow} Z & \stackrel{w'}{\longrightarrow} X'[1] \end{array}$$

will be called a *morphism of triangles*. If f, g, h are isomorphisms then we will say that the two triangles involved are isomorphic.

(ii) A class of *distinguished triangles* satisfying the following axioms:

TR1: For any $X \in \mathcal{D}$ the triangle

$$X \xrightarrow{\mathrm{id}} X \longrightarrow 0 \longrightarrow X[1]$$

is distinguished and any triangle isomorphic to a distinguished one, is itself distinguished. Furthermore, any morphism $X \xrightarrow{u} Y$ can be be completed (not necessarily uniquely) to a distinguished triangle

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1].$$

A distinguished triangle

$$X \to Y \to Z \to X[1]$$

will also be written as

$$X \to Y \to Z \leadsto$$

TR2: (Rotation invariance). A triangle

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$$

is distinguished if and only if the triangle

$$Y \xrightarrow{v} Z \xrightarrow{w} X[1] \xrightarrow{-u[1]} Y[1]$$

is distinguished.

TR3: For any commutative diagram of the form

$$\begin{array}{ccc} X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1] \\ f & g \\ & f \\ X' \xrightarrow{u'} Y' \xrightarrow{v'} Z' \xrightarrow{w'} X'[1] \end{array}$$

where the rows are distinguished triangles, there is a map $h: Z \to Z'$, which makes the diagram

$$\begin{array}{ccc} X & \stackrel{u}{\longrightarrow} Y & \stackrel{v}{\longrightarrow} Z & \stackrel{w}{\longrightarrow} X[1] \\ f & & g \\ \downarrow & & h \\ X' & \stackrel{u'}{\longrightarrow} Y' & \stackrel{v'}{\longrightarrow} Z' & \stackrel{w'}{\longrightarrow} X'[1] \end{array}$$

commutative.

TR4: (Octahedron axiom). Given distinguished triangles

$$X \xrightarrow{u} Y \xrightarrow{u'} Z' \rightsquigarrow,$$

$$Y \xrightarrow{v} Z \xrightarrow{v'} X' \rightsquigarrow,$$

$$X \xrightarrow{vu} Z \xrightarrow{w'} Y' \rightsquigarrow,$$

there exists a distinguished triangle

$$Z' \xrightarrow{f} Y' \xrightarrow{g} X' \rightsquigarrow,$$

such that the following diagram is commutative:

All enclosures in this diagram are commutative, this includes the (not so obvious) square containing the paths from Y' to Y[1] and the square containing the paths from Z' to X[1].

0.6. Generation for triangulated categories. Let \mathcal{D} be a triangulated category. Denote by $[\mathcal{D}]$ the collection of isomorphism classes of objects in \mathcal{D} , and for $X \in \mathcal{D}$, let [X] denote the corresponding isomorphism class. Let A and B be subcollections of $[\mathcal{D}]$. Following [BBD, §1.3.9], define

 $A*B = \{ [Y] \in [\mathcal{D}] \mid \text{there is a distinguished triangle } X \to Y \to Z \to X[1] \text{ with } [X] \in A \text{ and } [Z] \in B \}.$

Lemma 0.11. The operation * is associative.

Proof. It suffices to show that for $X, Y, Z \in \mathcal{D}$, one has

$$([X] * [Y]) * [Z] = [X] * ([Y] * [Z]).$$

Suppose A is contained in the left hand side, i.e. we have a diagram

The octahedral axiom then gives us a commutative diagram

We infer that A is contained in the right hand side. The reverse inclusion is proved similarly. \Box

Let \mathcal{I} be a subcategory of \mathcal{D} . Denote by $\langle \mathcal{I} \rangle$ the smallest full subcategory of \mathcal{D} containing \mathcal{I} and closed under finite direct sums, direct summands and shifts. Put $\langle \mathcal{I} \rangle_0 = 0$ and inductively define $\langle \mathcal{I} \rangle_i = \langle \mathcal{I} \rangle_{i-1} * \langle \mathcal{I} \rangle$, $i \geq 1$. We put $\langle \mathcal{I} \rangle_{\infty} = \bigcup_{i \geq 0} \langle \mathcal{I} \rangle_i$. We say that \mathcal{I} generates \mathcal{D} if every object in \mathcal{D} is isomorphic to some object in $\langle \mathcal{I} \rangle_{\infty}$. Further, we say that $X \in \mathcal{D}$ is of length n (relative to \mathcal{I}) if n is minimal with the property that X is isomorphic to some object in $\langle \mathcal{I} \rangle_n$.

The following result is the triangulated analogue of Lemma 0.9.

Proposition 0.12. Let \mathcal{I} be a generating subcategory of \mathcal{D} . Let $F, G : \mathcal{D} \to \mathcal{D}'$ be triangulated functors. Suppose $\varepsilon: F \to G$ is a natural transformation which is an isomorphism on \mathcal{I} , i.e., $\varepsilon: F(L) \xrightarrow{\sim} G(L)$ for every $L \in \mathcal{I}$. Then ε is an isomorphism.

Proof. We need to show that $\varepsilon: F(X) \xrightarrow{\sim} G(X)$ for each $X \in \mathcal{D}$. Proceed by induction on the length (relative to \mathcal{I}) of X. The base case is given by the statement for objects in \mathcal{I} . Assume that the result holds for objects of length < n and suppose X is of length n. Then we have a distinguished triangle $X' \to X \to L \rightsquigarrow$, with X' of length n-1 and $L \in \mathcal{I}$. This gives a morphism of triangles

$$\begin{array}{c} F(X') \longrightarrow F(X) \longrightarrow F(L) & \longleftarrow \\ \varepsilon \Big| \sim & \varepsilon \Big| & \varepsilon \Big| \sim \\ G(X') \longrightarrow G(X) \longrightarrow G(L) & \longleftarrow \end{array}$$

R. VIRK

By the induction hypothesis, the outer vertical arrows are isomorphisms. This forces ε : $F(X) \to G(X)$ to also be an isomorphism.

References

- [BBD] A. A. BEILINSON, J. BERNSTEIN, P. DELIGNE, *Faisceaux pervers*, Analyse et topologie sur les espaces singulares, Asrérisque **100** (1982), 1-171.
- [GeMa] S. I. GELFAND, Y. I. MANIN, *Methods of Homological Algebra*, Springer Monographs in Mathematics, New York (second edition 2003).
- [KaSc] M. KASHIWARA, P. SCHAPIRA, *Categories and Sheaves*, Grundlehren der mathematischen Wissenschaften **332**, Springer-Verlag, Berlin (2006).

Department of Mathematics, University of Wisconsin, Madison, WI 53706 E-mail address: wirk@math.wisc.edu