
GENERATION AND EQUIVALENCES IN ABELIAN AND
TRIANGULATED CATEGORIES

R. VIRK

We will not worry about any kind of set theoretical issues when dealing with categories. We
will assume that we remain in a given universe or, as put in [GeMa, p. 38], ‘that all the required
hygiene regulations are obeyed’.

We will denote the category of sets by Set. Unless stated otherwise, all functors will tacitly
be covariant.

0.1. Preliminaries. Let us recall the notion of a fully faithful functor. Let A and B be two
categories. A functor F : A → B is full if for any two objects A, B ∈ A the induced map

F : Hom(A, B) → Hom(F (A), F (B))

is surjective. The functor F is called faithful if this map is injective for all A, B ∈ A.

Proposition 0.1. Let F : A → B be a fully faithful functor. Then F is an equivalence if and
only if every object B ∈ B is isomorphic to an object of the form F (A) for some A ∈ A.

Proof. We define an inverse functor F−1 as follows: for each B ∈ B, choose an object AB ∈ A
together with an isomorphism ϕB : F (AB)

∼−→B. Then, set F−1(B) = AB and for f : B1 → B2,
F−1(f) is given by applying the inverse of the bijection

F : Hom(AB1 , AB2)
∼−→Hom(F (AB1), F (AB2))

to ϕ−1
B2
◦f ◦ϕB1 . The isomorphisms FF−1 ' idB and F−1F ' idA are the ones that are naturally

induced by the isomorphisms ϕB. �

This immediately yields:

Corollary 0.2. Any fully faithful functor F : A → B defines an equivalence between A and the
full subcategory of B of all objects B ∈ B isomorphic to F (A) for some A ∈ A.

0.2. Yoneda lemma. Given a category A, let Aop denote the opposite category. We let
Funct(A,Set) denote the category of all functors from A to Set. In particular, Funct(Aop,Set)
is the category of contravariant functors from A to Set. Recall that a functor F ∈ Funct(Aop)
is called representable if it is isomorphic to Hom(−, A) for some A ∈ A.

Lemma 0.3 (Yoneda lemma). The functor

Φ : A → Funct(Aop,Set),

A 7→ Hom(−, A)

defines an equivalence of A with the full subcategory of representable functors F ∈ Funct(Aop).
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Proof. In view of the preceding corollary, it suffices to show that Φ is fully faithful. It is clear
that Φ is faithful. Let us show that Φ is full. Let ϕ : Hom(−, A) → Hom(−, A′) be a natural
transformation. This gives a map Hom(A, A) → Hom(A, A′), let ι be the image of idA under
this map. Given A′′ ∈ A and f ∈ Hom(A′′, A), we claim that ϕ(f) = ι ◦ f (this will certainly
prove that Φ is full). Indeed,

ϕ(f) = ϕ(f ◦ idA) = ϕ(idA) ◦ f = ι ◦ f.

This completes the proof. �

0.3. Adjoint functors. Given categories A and B, an adjoint pair (F ∗, F ) is the following
data: functors F : A → B and F ∗ : B → A, along with two natural transformations

ε : F ∗F → idA, η : idB → FF ∗,

called the counit and unit respectively, such that the compositions

F
η◦1F

// FF ∗F
1F ◦ε

// F and F ∗ 1F∗◦η
// F ∗FF ∗ ε◦1F∗

// F ∗

are equal to the identity maps 1F : F → F and 1F ∗ : F ∗ → F ∗, respectively. Given such an
adjoint pair (F ∗, F ), there is an isomorphism functorial in A ∈ A and B ∈ B

αA,B : HomA(F ∗B, A)
∼−→HomB(B, F (A)), f 7→ F (f) ◦ η(B).

The inverse is given by f ′ 7→ εF (F ∗F (A)) ◦ F ∗(f ′). Conversely, the data of such a functorial
isomorphism provides the structure of an adjoint pair. Namely, set ε(F ∗F (A)) = α−1

A,F (A)(idF (A))

and η(B) = αF ∗(B),B(idF ∗(B)). Note that, by construction, we have commutative diagrams

HomB(B, B′)
F ∗

//

η◦
**

HomA(F ∗(B), F ∗(B′))

αF∗(B′),B
��

HomB(B, FF ∗(B′))

(0.1)

HomA(A, A′)
F

//

◦ε
**

HomB(F (A), F (A′))

α−1
F (A),A′

��

HomA(F ∗F (A), A′)

(0.2)

Given an adjoint pair (F ∗, F ), F ∗ is said to be left adjoint to F and F is said to be right
adjoint to F ∗. The following is a consequence of the Yoneda lemma.

Proposition 0.4. Suppose a fully faithful functor F : A → B admits a left adjoint F ∗. Then
the counit

ε : F ∗F → idA

is an isomorphism.
Similarly, if a fully faithful functor F ∗ : B → A admits a right adjoint F , then the unit

η : idA → FF ∗

is an isomorphism.
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Proof. Assume F is fully faithful. Then the diagram (0.2) shows that

HomA(A, A′)
◦ε

// HomA(F ∗F (A), A′)

is an isomorphism for all A, A′ ∈ A. That is, ◦ε : HomA(A,−) → HomA(F ∗F (A),−) is an
isomorphism in Funct(A,Set). It follows from the Yoneda lemma that ε : F ∗F (A) → A is an
isomorphism.

The proof of the second statement is similar. �

Remark 0.5. In short, if (F ∗, F ) is an adjoint pair, then:

F is fully faithful if and only if εF : F ∗F
∼−→id.

Similarly,
F ∗ is fully faithful if and only if ηF : id

∼−→FF ∗.

Proposition 0.6. Let (F ∗, F ) be an adjoint pair of functors F : A → B, F ∗ : B → A between
abelian categories. Then, F is left exact and F ∗ is right exact.

Proof. Suppose 0−→A
f−→A′ is exact in A. Let us show that 0−→F (A)

F (f)−→F (A′) is exact in
B. By the Yoneda lemma, it suffices to show that

0−→HomB(−, F (A))
F (f)◦−→HomB(−, F (A′))

is exact. Since (F ∗, F ) is an adjoint pair, for each B ∈ B we obtain a commutative diagram

0 // HomB(B, F (A))
F (f)◦

//

∼
��

HomB(B, F (A′))

∼
��

0 // HomA(F ∗(B), A)
f◦

// HomA(F ∗(B), A′).

The bottom row of this diagram is exact (as HomA(F ∗(B),−) is left exact). This forces the
top row to also be exact.

The proof of right exactness of F ∗ is similar. �

Remark 0.7. More generally, given an adjoint pair (F ∗, F ) (we do not require the functors to
be between abelian categories), F ∗ preserves all colimits and F preserves all limits.

We conclude this subsection with a trivial (but key) observation that is immediate from the
defining properties of the unit and the counit.

Lemma 0.8. Let A and B be additive categories. Suppose F : A → B is left adjoint to
G : B → A.

(i) If X ∈ A is such that F (X) 6= 0, then the unit map η : X → GF (x) is not zero.
(ii) If Y ∈ B is such that G(Y ) 6= 0, then the counit map ε : FG(Y ) → Y is not zero.

0.4. K0 of an abelian category. Let A be an abelian category. Define the Grothendieck
group, denoted K0(A), as the free abelian group on symbols [A], A ∈ A, modulo the relation

[A] = [A1] + [A2]

if there is a short exact sequence

0 → A1 → A → A2 → 0.
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A simple object in an abelian category A is an object L ∈ A such that any monomorphism
A → L is either 0 or an isomorphism (this automatically implies that any morphism L → A
is either 0 or a monomorphism). Simple objects in A are also called objects of length one. For
n ≥ 2, objects of length n are inductively defined to be those objects A ∈ A such that there is
an exact sequence

0 → A′ → A → L → 0

with A′ of length n− 1 and L simple. If every object in A has finite length, then the Jordan-
Höleder theorem holds in A (with the usual proof), i.e., for an object A ∈ A of finite length, the
length of A is well defined, and the simple objects that occur in a ‘composition series’ of A are
unique upto isomorphism and permutation. The category of finite dimensional representations
of an algebra is the standard example of such a category.

Lemma 0.9. Let A be an abelian category such that every object in A has finite length. Let
F, G : A → B be exact functors. Suppose ε : F → G is a natural transformation which is an
isomorphism on simple objects, i.e., ε : F (L)

∼−→G(L) for every simple object L ∈ A. Then
ε : F → G is an isomorphism.

Proof. We need to show that ε : F (A)
∼−→G(A) for each A ∈ A. Proceed by induction on the

length of A. The base case is given by the statement for simple objects. Assume that the
claim is true for objects of length < n and suppose that A is of length n. Then we have an
exact sequence 0 → A′ → A → L → 0, with A′ of length n − 1 and L simple. This gives a
commutative diagram

0 // F (A′)

ε ∼
��

// F (A)

ε

��

// F (L)

ε ∼
��

// 0

0 // G(A′) // G(A) // G(L) // 0.

The outer vertical arrows are isomorphisms by the induction hypothesis. This forces ε : F (A) →
G(A) to also be an isomorphism. �

Proposition 0.10. Let A and B be abelian categories such that every object in A and B has
finite length. Let F : A → B, G : B → A be functors such that F and G are both left and
right adjoint to each other. If F and G induce mutually inverse isomorphisms on Grothendieck
groups then, FG ' idB and GF ' idA.

Proof. Let ε : FG → idB be the unit morphism of the adjoint pair (F, G). Lets prove that ε
is an isomorphism. By Lemma 0.9 it suffices to show that ε : FG(L) → L is an isomorphism
for every simple object L ∈ B. Since [FG(L)] = [L] in K0(B), we infer that FG(L) ' L.
Consequently, we only need to show that ε : FG(L) → L is non-zero. But this is immediate
from Lemma 0.8.

The proof of GF ' idA is similar. �

0.5. Triangulated categories. Let D be an additive category. The structure of a triangulated
category on D is given by the following data:

(i) An additive equivalence Σ : D ∼−→D. For X ∈ D and n ∈ Z, we will write X[n] instead
of ΣnX. Further, diagrams of the form

X
u−→Y

v−→Z
w−→X[1]
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will be called triangles. A commutative diagram of the form

X

f

��

u
// Y

v
//

g

��

Z
w

//

h

��

X[1]

f [1]
��

X ′ u′
// Y ′ v′

// Z
w′

// X ′[1]

will be called a morphism of triangles. If f, g, h are isomorphisms then we will say that
the two triangles involved are isomorphic.

(ii) A class of distinguished triangles satisfying the following axioms:

TR1: For any X ∈ D the triangle

X
id−→X−→0−→X[1]

is distinguished and any triangle isomorphic to a distinguished one, is itself distin-
guished. Furthermore, any morphism X

u−→Y can be be completed (not necessarily
uniquely) to a distinguished triangle

X
u−→Y

v−→Z
w−→X[1].

A distinguished triangle

X → Y → Z → X[1]

will also be written as

X → Y → Z  

TR2: (Rotation invariance). A triangle

X
u−→Y

v−→Z
w−→X[1]

is distinguished if and only if the triangle

Y
v−→Z

w−→X[1]
−u[1]−→Y [1]

is distinguished.
TR3: For any commutative diagram of the form

X
u

//

f

��

Y
v

//

g

��

Z
w

// X[1]

f [1]
��

X ′ u′
// Y ′ v′

// Z ′ w′
// X ′[1]

where the rows are distinguished triangles, there is a map h : Z → Z ′, which makes
the diagram

X
u

//

f

��

Y
v

//

g

��

Z
w

//

h
��

X[1]

f [1]
��

X ′ u′
// Y ′ v′

// Z ′ w′
// X ′[1]

commutative.
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TR4: (Octahedron axiom). Given distinguished triangles

X
u−→Y

u′−→Z ′  ,

Y
v−→Z

v′−→X ′  ,

X
vu−→Z

w′
−→Y ′  ,

there exists a distinguished triangle

Z ′ f−→Y ′ g−→X ′  ,

such that the following diagram is commutative:

Z ′

f

��

@@
@�

@�
@�

@�

Y

u′
BB

v
%%

Y ′

g

��

666v6v6v

Z

w′ 88

v′

((
X

u

EE

vu

77

X ′

��
�[

�[
�[

�[
�[

&&
&f&f

All enclosures in this diagram are commutative, this includes the (not so obvious)
square containing the paths from Y ′ to Y [1] and the square containing the paths from
Z ′ to X[1].

0.6. Generation for triangulated categories. Let D be a triangulated category. Denote
by [D] the collection of isomorphism classes of objects in D, and for X ∈ D, let [X] denote
the corresponding isomorphism class. Let A and B be subcollections of [D]. Following [BBD,
§1.3.9], define

A∗B = {[Y ] ∈ [D] | there is a distinguished triangle X → Y → Z → X[1] with [X] ∈ A and [Z] ∈ B}.

Lemma 0.11. The operation ∗ is associative.

Proof. It suffices to show that for X, Y, Z ∈ D, one has

([X] ∗ [Y ]) ∗ [Z] = [X] ∗ ([Y ] ∗ [Z]).
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Suppose A is contained in the left hand side, i.e. we have a diagram

Y

��

X // A // Y Z

��

///o/o/o

Z

��
�O
�O
�O

The octahedral axiom then gives us a commutative diagram

A[−1]

��

==

Y Z[−1]

::

))

C

��

88
8x8x

Z[−1]

88

((
X

AA

44

Y

��
�[

�[
�[

�[ &&&f&f

We infer that A is contained in the right hand side. The reverse inclusion is proved similarly. �

Let I be a subcategory of D. Denote by 〈I〉 the smallest full subcategory of D containing I
and closed under finite direct sums, direct summands and shifts. Put 〈I〉0 = 0 and inductively
define 〈I〉i = 〈I〉i−1 ∗ 〈I〉, i ≥ 1. We put 〈I〉∞ =

⋃
i≥0〈I〉i. We say that I generates D if every

object in D is isomorphic to some object in 〈I〉∞. Further, we say that X ∈ D is of length n
(relative to I) if n is minimal with the property that X is isomorphic to some object in 〈I〉n.

The following result is the triangulated analogue of Lemma 0.9.

Proposition 0.12. Let I be a generating subcategory of D. Let F, G : D → D′ be triangulated
functors. Suppose ε : F → G is a natural transformation which is an isomorphism on I, i.e.,
ε : F (L)

∼−→G(L) for every L ∈ I. Then ε is an isomorphism.

Proof. We need to show that ε : F (X)
∼−→G(X) for each X ∈ D. Proceed by induction on the

length (relative to I) of X. The base case is given by the statement for objects in I. Assume
that the result holds for objects of length < n and suppose X is of length n. Then we have
a distinguished triangle X ′ → X → L  , with X ′ of length n − 1 and L ∈ I. This gives a
morphism of triangles

F (X ′) //

ε ∼
��

F (X) //

ε

��

F (L) ///o/o/o

ε ∼
��

G(X ′) // G(X) // G(L) ///o/o/o
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By the induction hypothesis, the outer vertical arrows are isomorphisms. This forces ε :
F (X) → G(X) to also be an isomorphism. �
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