WEAK sl₂-CATEGORIFICATIONS

R. VIRK

Put $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $h = ef - fe = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then e, f, h give a basis for the Lie algebra \mathfrak{sl}_2 .

Let \mathcal{C} be an artinian abelian category with Grothendieck group $K(\mathcal{C})$. Following [CR08], a *weak* \mathfrak{sl}_2 -categorification is the data of an adjoint pair (E, F) of exact endofunctors of \mathcal{C} such that

- the action of e = [E] and f = [F] on $\mathbb{Q} \otimes K(\mathcal{C})$ gives a locally finite \mathfrak{sl}_2 -representation,
- the classes of the simple objects of \mathcal{C} are weight vectors,
- F is isomorphic to a left adjoint of E.

We put $E_{\pm} = E$, $E_{\pm} = F$ and $e_{\pm} = [E_{\pm}]$. By the weight space of an object of C, we will mean the weight space of its class (whenever this is meaningful).

Let V be a locally finite representation of \mathfrak{sl}_2 . Given $\lambda \in \mathbb{Z}$, we denote by V_{λ} the weight space of V for the weight λ . For $v \in V$ let

$$h_{\pm}(v) = \max\{n \ge 0 \mid e_{+}^{n} \ne 0\}.$$

Proposition 0.0.1. [CR08, Proposition 5.5] Fix a weak \mathfrak{sl}_2 -categorification of \mathcal{C} and let $V = \mathbb{Q} \otimes K(\mathcal{C})$. Let \mathcal{C}_{λ} be the full subcategory of objects of whose class is in V_{λ} . Then, $\mathcal{C} = \bigoplus_{\lambda} \mathcal{C}_{\lambda}$. In particular, the class of an indecomposable object of \mathcal{C} is a weight vector.

Proof. Let L_1 and L_2 be simple objects in different weight spaces. Then, there is $\varepsilon \in \{\pm\}$ and $\{i, j\} = \{1, 2\}$ such that $h_{\varepsilon}(L_i) > h_{\varepsilon}(L_j)$. Set $r = h_{\varepsilon}(L_i)$. Suppose M is an extension of L_1 by L_2 . Then, $E_{\varepsilon}^r M \cong E_{\varepsilon}^r L_i \neq 0$. So, all the composition factors of $E_{-\varepsilon}^r E_{\varepsilon}^r M$ are in the same weight space as L_i . Now,

$$\operatorname{Hom}(E^r_{-\varepsilon}E^r_{\varepsilon}M,M)\cong\operatorname{Hom}(E^r_{\varepsilon}M,E^r_{\varepsilon}M)\cong\operatorname{Hom}(M,E^r_{-\varepsilon}E^r_{\varepsilon}M)$$

and these spaces are not zero. So M has a non-zero simple quotient and a non-zero simple submodule in the same weight space as L_i . Hence, L_i is both a submodule and quotient of M. Consequently $M = L_1 \oplus L_2$.

Thus, $\operatorname{Ext}^1(L_1, L_2) = 0$ whenever L_1 and L_2 are simple objects in different weight spaces.

References

[CR08] J. CHUANG, R. ROUQUIER, Derived equivalences for symmetric groups and sl₂categorification, Annals of Math. 167 (2008), 245-298.

R. VIRK

Department of Mathematics, University of Wisconsin, Madison, WI 53706 $E\text{-}mail\ address:\ wirk@math.wisc.edu$

 $\mathbf{2}$