SUMMARY OF SOME CONSTRUCTIONS IN DERIVED CATEGORIES

R. VIRK

1. Review of categories and functors

Let $F, G : \mathcal{A} \to \mathcal{B}$ be functors between categories \mathcal{A} and \mathcal{B} . A morphism of functors $\phi \colon F \to G$ consists of a morphism $\phi_X \colon F(X) \to G(X)$ for each $X \in \mathcal{A}$, such that $\phi_Y \circ F(f) = G(f) \circ \phi_X$ for every morphism $f \colon X \to Y$. The terms 'functorial', 'natural' and 'canonical' will be used as synonyms for 'a morphism of functors'. The identity endomorphism of a functor F will be denoted $\mathbb{1}_F$.

1.1. A functor $F: \mathcal{A} \to \mathcal{B}$ is *full* if the map it induces on Hom sets is surjective; it is *faithful* if the induced map is injective. It is an *equivalence* if there exists a functor $G: \mathcal{B} \to \mathcal{A}$ such that FG and GF are canonically isomorphic to $\mathrm{id}_{\mathcal{B}}$ and $\mathrm{id}_{\mathcal{A}}$, respectively. In this situation the functors F and G are *mutually inverse equivalences*. An equivalence is necessarily full and faithful. Moreover:

Proposition. Let $F : A \to B$ be a full and faithful functor. Then F is an equivalence if and only if every object $Y \in B$ is isomorphic to F(X) for some $X \in A$.

Proof. See [KaSc, Prop. 1.3.13].

1.2. Yoneda lemma. Let \mathcal{A} be a category. Let Set be the category of sets. Let Funct(\mathcal{A} , Set) be the category of functors $\mathcal{A} \to$ Set. A functor $F \in$ Funct(\mathcal{A} , Set) is *representable* if $F \simeq \text{Hom}_{\mathcal{A}}(X, -)$ for some object $X \in \mathcal{A}$. In this situation, the object X is said to *represent* F.

Lemma (Yoneda lemma). The functor

 $\mathcal{A} \to \operatorname{Funct}(\mathcal{A}, \operatorname{Set}), \qquad X \mapsto \operatorname{Hom}_{\mathcal{A}}(X, -)$

defines an equivalence of \mathcal{A} with the full subcategory of representable functors in $\operatorname{Funct}(\mathcal{A}, \operatorname{Set})$.

Proof. See [KaSc, Prop. 1.4.3].

1.3. Additive categories. A category \mathcal{A} is *additive* if all Hom sets are equipped with an abelian group structure such that composition of morphisms is bilinear and if all finite products exist in \mathcal{A} . The empty product gives a terminal object in \mathcal{A} . For $X, Y \in \mathcal{A}$, the maps $X \stackrel{\text{id}}{\leftarrow} X \stackrel{0}{\to} Y$ give a unique map $X \to X \times Y$. Similarly, there is a unique map $Y \to X \times Y$. Consequently, finite products coincide with the corresponding coproducts. In particular, the terminal object is also initial and is hence a zero object.

Let \mathcal{B} be another additive category. An *additive functor* $\mathcal{A} \to \mathcal{B}$ is a functor F such that F(f+g) = F(f) + F(g) for all morphisms $f, g \in \mathcal{A}$. Functors between additive categories will always be assumed to be additive.

1.4. Abelian categories. An additive category is *abelian* if it possesses all kernels, cokernels and if every monomorphism is the kernel of some morphism and every epimorphism is the cokernel of some morphism. See [KaSc, Ch. 8] for details. Let \mathcal{A} be an abelian category. A sequence of maps $X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} \cdots \xrightarrow{f_n} X_{n+1}$, in \mathcal{A} , is an *exact sequence* if the image of f_i is equal to the kernel of f_{i+1} for each $0 \leq i < n$. An exact sequence $0 \to X \to Y \to Z \to 0$ is also referred to as a *short exact sequence*.

Let \mathcal{B} be another abelian category. A functor $F: \mathcal{A} \to \mathcal{B}$ is *left exact* if for each exact sequence $0 \to X \to Y$ in \mathcal{A} , the sequence $0 \to F(X) \to F(Y)$ is exact in \mathcal{B} . Similarly, F is *right exact* if for each exact sequence $X \to Y \to 0$ in \mathcal{A} , the sequence $F(X) \to F(Y) \to 0$ is exact in \mathcal{B} . The functor F is *exact* if it is both left and right exact.

The Grothendieck group $K_0(\mathcal{A})$ is the free abelian group on symbols $[X], X \in \mathcal{A}$, modulo the relation $[X] = [X_1] + [X_2]$ for each short exact sequence $0 \to X_1 \to X \to X_2 \to 0$. Consequently, if $X^{\bullet} = \cdots \to X^i \to \cdots$ is a bounded complex in \mathcal{A} , then $\sum_i (-1)^i [X^i] = \sum_i (-1)^i [H^i(X^{\bullet})]$ in $K_0(\mathcal{A})$. Let $\{L_i\}$ be a set of objects in \mathcal{A} such that the classes $[L_i]$ comprise a basis of

Let $\{L_i\}$ be a set of objects in \mathcal{A} such that the classes $[L_i]$ comprise a basis of $K_0(\mathcal{A})$. Then for $M \in \mathcal{A}$, we write $[M : L_i]$ for the coefficient of L_i when [M] is expanded in terms of the basis $\{[L_i]\}$, i.e., $[M] = \sum_i [M : L_i][L_i]$.

A simple object or an object of length one is an object $L \in \mathcal{A}$ such that any monomorphism $A \to L$ is either 0 or an isomorphism. For $n \geq 2$, objects of length n are inductively defined to be those objects X that fit into an exact sequence $0 \to X' \to X \to L \to 0$, with X' of length n - 1 and L simple. If every object in \mathcal{A} has finite length, then the Jordan-Hölder theorem holds in \mathcal{A} , i.e., for an object $X \in \mathcal{A}$, the length of X is well defined and the simple objects that occur in a 'composition series' of X are unique up to isomorphism and permutation (see [KaSc, Exer. 8.20]).

1.5. Complexes. Let \mathcal{A} be an additive category. A *complex* X^{\bullet} in \mathcal{A} is the data of a \mathbb{Z} -graded object $X^{\bullet} = \bigoplus_{i \in \mathbb{Z}} X^i, X^i \in \mathcal{A}$ and a degree 1 endomorphism $d_X : X^{\bullet} \to X^{\bullet}$ such that $d_X^2 = 0$. This is usually visualized as a sequence of morphisms $\dots \to X^i \xrightarrow{d_i} X^{i+1} \to \dots$, such that $d_{i+1} \circ d_i = 0$ for each i. The object X^i is in degree i and the morphisms d_i are those induced by d_X . The endomorphism d_X is the *differential* of X^{\bullet} . If \mathcal{A} is an abelian category, the cohomology $H^*(X^{\bullet})$ of X^{\bullet} is the sequence of objects (in \mathcal{A}): $H^i(X^{\bullet}) = \frac{\ker(d_i)}{\operatorname{im}(d_{i-1})}$. A *chain map* is a graded morphism $f \colon X^{\bullet} \to Y^{\bullet}$ of degree 0 such that $d_Y f =$

A chain map is a graded morphism $f: X^{\bullet} \to Y^{\bullet}$ of degree 0 such that $d_Y f = fd_X$. Let $f, g: X^{\bullet} \to Y^{\bullet}$ be chain maps. Then f and g are homotopic if there exists a graded morphism $s: X^{\bullet} \to Y^{\bullet}$ of degree -1 such that $d_Y s + sd_X = f - g$. The map s is a homotopy between f and g. Further, we say that f and g are in the same homotopy class. In the setting of abelian categories, homotopic maps induce the same maps on cohomology (see [KaSc, Lemma 12.2.2]).

Denote by $\operatorname{Comp}(\mathcal{A})$ the category of all complexes, by $\operatorname{Comp}^{-}(\mathcal{A})$ the category of bounded above complexes, by $\operatorname{Comp}^{+}(\mathcal{A})$ the category of bounded below complexes and by $\operatorname{Comp}^{\mathrm{b}}(\mathcal{A})$ the category of bounded complexes, in \mathcal{A} . As each object of \mathcal{A} is a complex concentrated in degree 0 we obtain a full and faithful embedding $\mathcal{A} \hookrightarrow \operatorname{Comp}(\mathcal{A})$.

The shift functor [1]: Comp(\mathcal{A}) \rightarrow Comp(\mathcal{A}) is defined as follows: if X^{\bullet} is a complex with differential d_i , then $(X^{\bullet}[1])^i = X^{i+1}$ with differential $d'_i = -d_{i+1}$. It is clear that [1] is a self-equivalence of Comp(\mathcal{A}). For $n \in \mathbb{Z}$, set $[n] = [1]^n$.

Let X^{\bullet}, Y^{\bullet} be complexes in \mathcal{A} with differentials d'_i and d''_i , respectively. Let $\phi \colon X^{\bullet} \to Y^{\bullet}$ be a chain map. The *cone* of ϕ is

$$\operatorname{cone}(\phi)^{i} = Y^{i} \oplus X^{i+1} \quad \text{with differential} \quad d_{i} = \begin{pmatrix} d_{i}^{\prime\prime} & \phi_{i+1} \\ 0 & -d_{i+1}^{\prime} \end{pmatrix}.$$
(1.1)

Define $\iota: Y^{\bullet} \to \operatorname{cone}(\phi)$ by $Y^i \xrightarrow{\begin{pmatrix} \mathrm{id} \\ 0 \end{pmatrix}} Y^i \oplus X^{i+1}$ and $\delta: \operatorname{cone}(\phi) \to X^{\bullet}[1]$ by $Y^i \oplus X^{i+1} \xrightarrow{(0 \ \mathrm{id})} X^{i+1}$. Both inc and δ are chain maps. A standard triangle is a sequence of morphisms of the form

$$X^{\bullet} \xrightarrow{\phi} Y^{\bullet} \xrightarrow{\iota} \operatorname{cone}(\phi) \xrightarrow{\delta} X^{\bullet}[1].$$
 (1.2)

2. TRIANGULATED CATEGORIES

A triangulated category is an additive category endowed with an auto-equivalence and a family of so-called *distinguished triangles* satisfying certain axioms. This subject deserves a whole book such as [Neeman]. I will not try to give an introduction to triangulated categories. However, I only assume that the reader is familiar with the axiomatics and basic properties of a triangulated category at the level of [KaSc, Ch. 10 §1]. The purpose of the remainder of this note is to recall a few specific constructions.

2.1. The *shift functor* in a triangulated category will be denoted by [1]. For $n \in \mathbb{Z}$, set $[n] = [1]^n$. Let \mathcal{T} be a triangulated category. A distinguished triangle $X \to Y \to Z \to X[1]$ will often be written as $X \to Y \to Z \to$. Further, Z will be referred to as the *cone* of the map $X \to Y$. Similarly, X will be referred to as the *cocone* of the map $Y \to Z$.

2.2. The Grothendieck group $K_0(\mathfrak{T})$ is the free abelian group on symbols [X], $X \in \mathfrak{T}$, modulo the relation $[X] = [X_1] + [X_2]$ for each distinguished triangle $X_1 \to X \to X_2 \rightsquigarrow$. In particular, [X[1]] = -[X] (see [KaSc, §10.1, TR3]).

2.3. Let \mathfrak{T}' be another triangulated category. A *triangulated* or an *exact* functor $\mathfrak{T} \to \mathfrak{T}'$ is the data of a functor F that preserves distinguished triangles and a canonical isomorphism $F \circ [1] \xrightarrow{\sim} [1] \circ F$. A morphism $F \to F'$ between triangulated functors is a natural transformation θ such that the following diagram commutes

$$\begin{array}{c} F \circ [1] \xrightarrow{\theta \circ [1]} F' \circ [1] \\ \sim \downarrow \qquad \qquad \downarrow \sim \\ [1] \circ F \xrightarrow{[1] \circ \theta} [1] \circ F' \end{array}$$

All natural transformations between triangulated functors will tacitly be assumed to be morphisms of triangulated functors.

2.4. Cohomological functors. Let \mathcal{A} be an abelian category. A functor $H: \mathcal{T} \to \mathcal{A}$ is *cohomological* if, for every distinguished triangle $X \to Y \to Z \rightsquigarrow$ in \mathcal{T} , the sequence $H(X) \to H(Y) \to H(Z)$ is exact in \mathcal{A} .

Proposition. Let \mathfrak{T} be a triangulated category and let $X \in \mathfrak{T}$. The functors $\operatorname{Hom}_{\mathfrak{T}}(X, -)$ and $\operatorname{Hom}_{\mathfrak{T}}(-, X)$ are cohomological.

Proof. See [KaSc, Prop. 10.1.13].

2.5. Let \mathcal{T} be a triangulated category. Let $\mathcal{A}, \mathcal{B} \subset \mathcal{T}$ be subcategories of \mathcal{T} . For $X \in \mathcal{T}$, write $[X] \in \mathcal{A}$ if there exists an object in \mathcal{A} that is isomorphic to X. Set

$$\mathcal{A} * \mathcal{B} = \{ Y \in \mathcal{T} | \text{ there is a distinguished triangle } X \to Y \to Z \sim with [X] \in \mathcal{A} \text{ and } [Z] \in \mathcal{B} \}.$$

Lemma ([BBD, Lemme 1.3.10]). The operation * is associative. That is, if \mathcal{A}, \mathcal{B} and \mathcal{C} are subcategories of \mathcal{T} , then $(\mathcal{A} * \mathcal{B}) * \mathcal{C} = \mathcal{A} * (\mathcal{B} * \mathcal{C})$.

Proof. Suppose $[X] \in (\mathcal{A} * \mathcal{B}) * \mathcal{C}$. Then there is some $X' \in \mathcal{T}$ and distinguished triangles $A \to X' \to B \to \text{and } X' \to X \to C \to$, with $[A] \in \mathcal{A}, [B] \in \mathcal{B}$ and $[C] \in \mathcal{C}$. Apply the octahedron axiom (see [KaSc, Def. 10.1.6 TR5]) to the composition $A \to X' \to X$ to obtain distinguished triangles $A \to X \to BC \to$ and $B \to X'' \to C \to$, with $X'' \in \mathcal{T}$. Thus, $[X] \in \mathcal{A} * (\mathcal{B} * \mathcal{C})$. The reverse inclusion is proved similarly. \Box

Let $\mathcal{A} \subseteq \mathcal{T}$ be a subcategory. Inductively define \mathcal{A}^{*i} , $i \in \mathbb{Z}_{\geq 0}$, by $\mathcal{A}^{*0} = 0$ and $\mathcal{A}^{*i+1} = \mathcal{A} * \mathcal{A}^{*i}$. As * is associative, $\mathcal{A}^{*i+1} = \mathcal{A} * \mathcal{A}^{*i} = \mathcal{A}^{*i} * \mathcal{A}$. Further, $\mathcal{A}^{*i} \subseteq \mathcal{A}^{*i+1}$. Set $\mathcal{A}^{*\infty} = \bigcup_{i \in \mathbb{Z}_{\geq 0}} \mathcal{A}^{*i}$.

2.6. Filtrations. An object $X \in \mathcal{T}$ is *filtered* by objects Y_1, \ldots, Y_n if there exists a sequence of objects $0 = X_0, X_1, \ldots, X_n = X$ and distinguished triangles $X_{i-1} \rightarrow X_i \rightarrow Y_i \rightsquigarrow$.

Lemma. Let $\mathcal{A} \subset \mathcal{T}$ be a subcategory. Then $X \in \mathcal{T}$ is in \mathcal{A}^{*n} if and only if X is filtered by some $Y_1, \ldots, Y_n \in \mathcal{A}$.

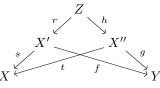
Proof. This is clear if one proceeds by induction on n.

Remark. Filtrations in triangulated categories are most commonly used in the following situation: let H be a cohomological functor. Let X be filtered by Y_1, \ldots, Y_n . By definition, there is a sequence of objects $0 = X_0, \ldots, X_n = X$ and distinguished triangles $X_{i-1} \to X_i \to Y_i \rightsquigarrow$. Assume that $H(Y_i[m]) = 0$ for all $m \in \mathbb{Z}$ and $1 \le i \le n$. Then, proceeding by induction on n, it follows that H(X[m]) = 0 for all $m \in \mathbb{Z}$.

2.7. Localization. Let \mathcal{T} be a triangulated category. Let $\mathcal{N} \subset \mathcal{T}$ be a *localizing* subcategory, i.e., \mathcal{N} satisfies the following properties:

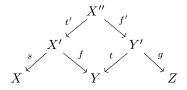
- $0 \in \mathbb{N};$
- $N \in \mathbb{N}$ if and only if $N[1] \in \mathbb{N}$;
- if $N \to M \to N' \to$ is a distinguished triangle in \mathfrak{T} with $N, N' \in \mathbb{N}$, then $M \in \mathbb{N}$.

An \mathbb{N} -quasi-isomorphism, or simply quasi-isomorphism if the \mathbb{N} is clear, is a morphism $s: X \to Y$ in \mathfrak{T} such that there is a distinguished triangle $X \xrightarrow{s} Y \to Z \rightsquigarrow$ with $Z \in \mathbb{N}$. Let \mathbb{N} -qis denote the collection of \mathbb{N} -quasi-isomorphisms. A roof (s, f) is a diagram of the form $X \xleftarrow{s} X' \xrightarrow{f} Y$, with $s \in \mathbb{N}$ -qis. Define an equivalence relation on roofs by declaring $X \xleftarrow{s} X' \xrightarrow{f} Y$ and $X \xleftarrow{t} X'' \xleftarrow{g} Y$ to be equivalent if there exists a third roof $X' \xleftarrow{r} Z \xrightarrow{h} X''$ such that the following diagram commutes



This equivalence relation is reflexive, symmetric and transitive (see [GeMa, Ch. 3 §2, Lemma 8 (a)] or [KaSc, Lemma 7.1.12])

Given roofs $X \stackrel{s}{\leftarrow} X' \stackrel{f}{\to} Y$ and $Y \stackrel{t}{\leftarrow} Y' \stackrel{g}{\to} Z$, there is a roof $X' \stackrel{t'}{\leftarrow} X'' \stackrel{f'}{\to} Y'$ such that the following diagram commutes



The roof $X \xleftarrow{st'} X'' \xrightarrow{gf'} Z$ is defined to be the composition of $X \xleftarrow{s} X' \xrightarrow{f} Y$ and $Y \xleftarrow{t} Y' \xrightarrow{g} Z$. This operation is well defined and associative on equivalence classes of roofs. For details see [GeMa, Ch. 3 §2 Lemma 8 (b)] or [KaSc, Lemma 7.1.13].

The *localization* of T with respect to N, denoted T/N, is the following category:

- $Objects(\mathcal{T}/\mathcal{N}) = Objects(\mathcal{T});$
- $\operatorname{Hom}_{\mathcal{T}/\mathcal{N}}(X,Y) =$ equivalence classes of roofs $X \xleftarrow{s} X' \xrightarrow{f} Y$,

with composition of roofs defined as above.

The localization functor quot: $\mathfrak{T} \to \mathfrak{T}/\mathfrak{N}$ is defined to be the identity on objects and by sending $f: X \to Y$ in \mathfrak{T} to the roof $X \xleftarrow{\mathrm{id}} X \xrightarrow{f} Y$. We abuse notation and write $[1]: \mathfrak{T}/\mathfrak{N} \to \mathfrak{T}/\mathfrak{N}$ for the image of $[1]: \mathfrak{T} \to \mathfrak{T}$ under quot.

Proposition. Define distinguished triangles in T/N as sequences equivalent to the image (under quot) of a distinguished triangle in T.

- (i) T/N is a triangulated category and quot : $T \to T/N$ is a triangulated functor.
- (ii) If $N \in \mathbb{N}$, then quot(N) = 0.
- (iii) Let \mathfrak{I}' be a triangulated category and let $\mathfrak{F} : \mathfrak{I} \to \mathfrak{I}'$ be a triangulated functor such that F(N) = 0 for each $N \in \mathbb{N}$. Then F factors uniquely through quot.

Proof. See [KaSc, Thm. 10.2.3].

2.8. The homotopy category. Let \mathcal{A} be an additive category. The *homotopy category* of \mathcal{A} , denoted Ho(\mathcal{A}), is defined as follows:

- $Objects(Ho(\mathcal{A})) = Objects(Comp(\mathcal{A}));$
- $\operatorname{Hom}_{\operatorname{Ho}(\mathcal{A})}(X^{\bullet}, Y^{\bullet}) = \operatorname{homotopy classes of maps in } \operatorname{Hom}_{\operatorname{Comp}(\mathcal{A})}(X^{\bullet}, Y^{\bullet}).$

Replacing $\operatorname{Comp}(\mathcal{A})$ by $\operatorname{Comp}^+(\mathcal{A})$, $\operatorname{Comp}^-(\mathcal{A})$ or $\operatorname{Comp}^{\mathrm{b}}(\mathcal{A})$ in the definition above we obtain the variants $\operatorname{Ho}^+(\mathcal{A})$, $\operatorname{Ho}^-(\mathcal{A})$ and $\operatorname{Ho}^{\mathrm{b}}(\mathcal{A})$, respectively.

Theorem. Let [1]: $\operatorname{Ho}(\mathcal{A}) \to \operatorname{Ho}(\mathcal{A})$ be the shift functor on complexes. Define distinguished triangles in $\operatorname{Ho}(\mathcal{A})$ to be triangles isomorphic to (1.2). This endows $\operatorname{Ho}(\mathcal{A})$ with the structure of a triangulated category.

Proof. See [KaSc, Thm. 11.2.6].

 \square

Proposition. Let \mathcal{A} be an abelian category For $n \in \mathbb{Z}$, let $H^n \colon Ho(\mathcal{A}) \to \mathcal{A}$ be the functor that associates to a complex its n^{th} cohomology. Then H^n is cohomological.

Proof. See [KaSc, Cor. 12.2.5].

2.9. The derived category. Let \mathcal{A} be an abelian category. Let $\mathcal{N} \subset \operatorname{Ho}(\mathcal{A})$ be the subcategory consisting of complexes X^{\bullet} such that $H^i(X^{\bullet}) = 0$ for all $i \in \mathbb{Z}$. Then \mathcal{N} is a localizing subcategory (for details see [KaSc, Ch. 13 §1]). So we are in the setting of Prop. **2.7**. The *derived category* of \mathcal{A} , denoted $D(\mathcal{A})$, is the triangulated category $\operatorname{Ho}(\mathcal{A})/\mathcal{N}$. Replacing $\operatorname{Ho}(\mathcal{A})$ by $\operatorname{Ho}^+(\mathcal{A})$, $\operatorname{Ho}^-(\mathcal{A})$ or $\operatorname{Ho}^{\mathrm{b}}(\mathcal{A})$ in this definition, we obtain the variants $D^+(\mathcal{A})$, $D^-(\mathcal{A})$ and $D^{\mathrm{b}}(\mathcal{A})$, respectively. The category $D^{\mathrm{b}}(\mathcal{A})$

(resp. $D^+(A)$, resp. $D^-(A)$) is equivalent to the full subcategory of D(A) consisting of complexes X^{\bullet} such that $H^n(X^{\bullet}) = 0$ for |n| >> 0 (resp. $n \ll 0$, resp. $n \gg 0$), see [KaSc, Prop. 13.1.12] for details.

Proposition. For $n \in \mathbb{Z}$, let $H^n : D(\mathcal{A}) \to \mathcal{A}$ be the functor that sends a complex to its n^{th} cohomology. Then H^n is cohomological.

Proof. See [KaSc, Prop. 13.1.5].

2.10. Exact sequences and distinguished triangles.

Proposition. Let $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ be an exact sequence in Comp(A). Then there exists a distinguished triangle $X \xrightarrow{f} Y \xrightarrow{g} Z \rightsquigarrow$ in D(.A).

Proof. See [KaSc, Prop. 13.1.13]

2.11. Hom in the derived category. Let $X, Y \in D(\mathcal{A})$. Set $\operatorname{Ext}^k_{\mathcal{A}}(X,Y) =$ $\operatorname{Hom}_{\mathcal{D}(\mathcal{A})}(X, Y[k])$. An object $X \in \mathcal{A}$ is also an object of $\mathcal{D}(\mathcal{A})$, since X is a complex concentrated in degree 0.

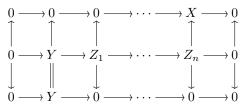
Proposition. Let $X, Y \in A$. Then

- (i) $\operatorname{Ext}_{\mathcal{A}}^{k}(X,Y) = 0$ for k < 0; (ii) $\operatorname{Ext}_{\mathcal{A}}^{0}(X,Y) \simeq \operatorname{Hom}_{\mathcal{A}}(X,Y)$. That is, the natural functor $\mathcal{A} \to D(\mathcal{A})$ is full and faithful

Proof. See [KaSc, Prop. 13.1.10].

2.12. Relation between Grothendieck groups. The embedding $\mathcal{A} \to D^{b}(\mathcal{A})$ induces a map $K_0(\mathcal{A}) \to K_0(\mathrm{D}^{\mathrm{b}}(\mathcal{A}))$. This map is an isomorphism, the inverse is given by $[X^{\bullet}] \mapsto \sum_{i \in \mathbb{Z}} (-1)^i [H^i(X^{\bullet})]$. The groups $K_0(\mathcal{A})$ and $K_0(\mathrm{D}^{\mathrm{b}}(\mathcal{A}))$ are identified via this isomorphism.

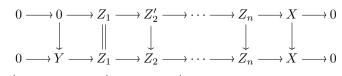
2.13. Yoneda Ext. Let $X, Y \in \mathcal{A}$. Let $Z = 0 \rightarrow Y \rightarrow Z_1 \rightarrow \cdots \rightarrow Z_n \rightarrow X \rightarrow 0$ be an exact sequence in \mathcal{A} . Define $\theta(Z) \in \operatorname{Ext}_{\mathcal{A}}^{n}(X,Y)$ by the roof



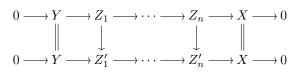
(The top vertical arrow is a quasi-isomorphism)

Proposition. Each element of $\operatorname{Ext}_{\mathcal{A}}^{n}(X,Y)$ is of the form $\theta(Z)$ for some exact sequence $Z = 0 \to Y \to Z_1 \to \cdots \to Z_n \to X \to 0$ in \mathcal{A} . Further:

(i) $\theta(Z) = 0$ if and only if there exists a commutative diagram with exact rows



(ii) If $Z' = 0 \to Y \to Z'_1 \to \cdots \to Z'_n \to X \to 0$ is another exact sequence in \mathcal{A} , then $\theta(Z) = \theta(Z')$ if and only if there exists a commutative diagram



6

Proof. For the first statement and (i), see [KaSc, Exer. 13.16] or [GeMa, Ch. III §5, Thm. 5 (c)]. (ii) is a restatement of the equivalence relation on roofs (see §2.7). \Box

Corollary. Let $Z = 0 \rightarrow Y \rightarrow Z_1 \rightarrow X \rightarrow 0$ be a short exact sequence. Then $\theta(Z) \in \operatorname{Ext}^{1}_{\mathcal{A}}(X,Y)$ is zero if and only if Z is split exact.

2.14. Cup product. Let $Z' = 0 \to Y' \to Z_1 \to \cdots \to Z_m \to Y \to 0$ and $Z = 0 \to Y \to Z_{m+1} \to \cdots \to Z_{m+n} \to X \to 0$ be exact sequences in \mathcal{A} . Let $Z' \cup Z$ denote the exact sequence $0 \to Z_1 \to \cdots \to Z_m \to Z_{m+1} \to \cdots \to Z_{m+n} \to X \to 0$.

Proposition. $\theta(Z' \cup Z) = \theta(Z') \circ \theta(Z)$.

Proof. See [GeMa, Ch. 3 §5, Thm. 5 (c)].

2.15. Projectives and injectives. Let \mathcal{A} be an abelian category. An object $P \in \mathcal{A}$ is projective if $\operatorname{Hom}_{\mathcal{A}}(P, -)$ is exact. The category \mathcal{A} has enough projectives if for any $A \in \mathcal{A}$ there exists an epimorphism $P \twoheadrightarrow A$ with P projective. Let $P_L \twoheadrightarrow L$ be an epimorphism with P_L projective and $L \in \mathcal{A}$ simple. Then P_L is a projective cover of L if P_L is indecomposable (i.e., P_L cannot be written as a non-trivial direct sum). A projective cover is unique up to isomorphism.

An object $I \in \mathcal{A}$ is *injective* if $\operatorname{Hom}_{\mathcal{A}}(-, I)$ is exact. The category \mathcal{A} has *enough injectives* if for any $A \in \mathcal{A}$ there exists a monomorphism $A \hookrightarrow I$ with I injective. Let $L \hookrightarrow I_L$ be a monomorphism with I_L injective and $L \in \mathcal{A}$ simple. Then I_L is an *injective hull* of L if I_L is indecomposable. An injective hull is unique up to isomorphism.

Proposition. Let \mathcal{A} be an abelian category. Let $X \in \mathcal{A}$. The following are equivalent:

- (i) X is projective.
- (ii) $\operatorname{Ext}^{1}_{\mathcal{A}}(X,Y) = 0$ for all $Y \in \mathcal{A}$.
- (iii) $\operatorname{Ext}_{\mathcal{A}}^{n}(X,Y) = 0$ for all $Y \in \mathcal{A}$ and all $n \neq 0$.

Similarly, the following are equivalent:

- (i) X is injective.
- (ii) $\operatorname{Ext}^{1}_{\mathcal{A}}(Y, X) = 0$ for all $Y \in \mathcal{A}$. (iii) $\operatorname{Ext}^{n}_{\mathcal{A}}(Y, X) = 0$ for all $Y \in \mathcal{A}$ and all $n \neq 0$.

Proof. See [GeMa, Ch. III §5, Lemma 10].

Remark. Let \mathcal{A} and \mathcal{B} be abelian categories. Let $f_* \colon \mathcal{A} \to \mathcal{B}$ be right adjoint to $f^*: \mathfrak{B} \to \mathcal{A}$. Assume that f_* is exact. Let $P \in \mathfrak{B}$ be projective. Then f^*P is projective in \mathcal{A} , since $\operatorname{Hom}_{\mathcal{A}}(f^*P, -) \simeq \operatorname{Hom}_{\mathcal{B}}(P, f_*-)$. A similar statement holds for injectives.

2.16. Derived categories as homotopy categories.

Proposition. Let \mathcal{A} be an abelian category. Let $\mathcal{N} \subset Ho(\mathcal{A})$ be the subcategory consisting of complexes X^{\bullet} such that $H^{i}(X^{\bullet}) = 0$ for all $i \in \mathbb{Z}$. Let \mathfrak{I} be a full subcategory of A such that for any $X \in A$, there exists $I \in \mathfrak{I}$ and a monomorphism $X \hookrightarrow I$. Then

- (i) for any $X \in \operatorname{Ho}^+(\mathcal{A})$, there exists $I \in \operatorname{Ho}^+(\mathfrak{I})$ and a quasi-isomorphism $s: X \to I;$
- (ii) let $\mathcal{N}' = \mathcal{N} \cap \operatorname{Ho}^+(\mathcal{I})$. The obvious functor $\operatorname{Ho}^+(\mathcal{I})/\mathcal{N}' \to D^+(\mathcal{A})$ is a triangulated equivalence of categories.

Proof. (i) is [KaSc, Lemma 13.2.1], (ii) is [KaSc, Prop. 13.2.2 (i)].

Lemma. Let \mathcal{A} be an abelian category. Let $\mathfrak{I} \subseteq \mathcal{A}$ be the full subcategory consisting of injective objects. Let $I^{\bullet} \in \operatorname{Comp}^+(\mathfrak{I})$. Let $X^{\bullet} \in \operatorname{Comp}(\mathcal{A})$ be such that the cohomology of X^{\bullet} is zero in every degree. Let $f: X^{\bullet} \to I^{\bullet}$ be a chain map. Then f is homotopic to zero.

Proof. See [KaSc, Lemma 13.2.4].

Combining Prop. 2.16 and Lemma 2.16 we get:

Theorem. Let \mathcal{A} be an abelian category and let \mathfrak{I} be the full subcategory of \mathcal{A} consisting of injective objects. If \mathcal{A} has enough injectives, then $\operatorname{Ho}^+(\mathfrak{I})$ is equivalent to $D^+(\mathcal{A})$ as a triangulated category.

Proof. See [KaSc, Prop. 13.2.3].

Assume we are in the situation of Prop. **2.16** (i), i.e., we are given a quasiisomorphism $s: X \to I$ with $X \in \operatorname{Ho}^+(\mathcal{A})$ and $I \in \operatorname{Ho}^+(\mathcal{I})$, then I is a *resolution* of X by objects in \mathcal{I} .

2.17. Derived functors. Let \mathcal{A} and \mathcal{B} be abelian categories and let $f_* \colon \mathcal{A} \to \mathcal{B}$ be a left exact functor. A full additive subcategory \mathcal{I} of \mathcal{A} is f_* -injective if:

- (i) for every object $X \in \mathcal{A}$ there is a monomorphism $X \hookrightarrow I$ with $I \in \mathfrak{I}$;
- (ii) if $0 \to X \to Y \to Z \to 0$ is an exact sequence in \mathcal{A} , and if X, Y are in \mathfrak{I} , then Z is also in \mathfrak{I} ;
- (iii) if $0 \to X \to Y \to Z \to 0$ is an exact sequence in \mathcal{A} with $X, Y, Z \in \mathcal{I}$, then $0 \to f_*X \to f_*Y \to f_*Z \to 0$ is exact in \mathcal{B} .

If \mathcal{A} has enough injectives, then the full subcategory of injective objects in \mathcal{A} is f_* -injective for any left exact functor f_* (see [KaSc, Remark 13.3.6 (iii)]).

Let $\mathcal{N} \subset \operatorname{Ho}(\mathcal{A})$ be the subcategory consisting of complexes whose cohomology vanishes in every degree. Suppose an f_* -injective subcategory $\mathfrak{I} \subseteq \mathcal{A}$ exists. Set $\mathcal{N}' = \mathcal{N} \cap \operatorname{Ho}^+(\mathfrak{I})$. Since f_* preserves exact sequences consisting of objects in \mathfrak{I} , it follows that f_* transforms objects of $\operatorname{Ho}^+(\mathfrak{I})$ quasi-isomorphic to zero into objects of $\operatorname{Ho}^+(\mathfrak{B})$ satisfying the same property. Therefore, $f_*: \operatorname{Ho}^+(\mathfrak{I}) \to \operatorname{Ho}^+(\mathfrak{B})$ factors through $\operatorname{Ho}^+(\mathfrak{I})/\mathcal{N}'$. Let **i**: $\operatorname{Ho}^+(\mathfrak{I})/\mathcal{N}' \xrightarrow{\sim} D^+(\mathcal{A})$ be the equivalence inverse to the one described in Prop. **2.16** (i.e., if $X \in D^+(\mathcal{A})$, then **i**X is a resolution of X by objects in \mathfrak{I}). The *right derived functor* $\mathbf{R}f_*: D^+(\mathcal{A}) \to D^+(\mathfrak{B})$ is defined to be the composition

$$D^+(\mathcal{A}) \xrightarrow{\mathbf{i}} Ho^+(\mathfrak{I})/\mathcal{N}' \xrightarrow{f_*} Ho^+(\mathcal{B}) \xrightarrow{\operatorname{quot}} D^+(\mathcal{B}).$$
 (2.1)

The derived functor $\mathbf{R}f_*$ is unique up to canonical isomorphism, in particular it does not depend on the choice of the f_* -injective subcategory \mathfrak{I} (see [KaSc, Prop. 13.3.5]).

Proposition. Let \mathcal{A}, \mathcal{B} and \mathcal{C} be abelian categories. Let $f_* \colon \mathcal{A} \to \mathcal{B}$ and $g_* \colon \mathcal{B} \to \mathcal{C}$ be left exact functors. Assume that there exist full additive subcategories $\mathbb{J} \subseteq \mathcal{A}$ and $\mathbb{J}' \subseteq \mathcal{B}$ such that \mathbb{J} is f_* -injective, \mathbb{J}' is g_* -injective and $f_*\mathbb{J} \subseteq \mathbb{J}'$. Then \mathbb{J} is g_*f_* -injective and induces an isomorphism

$$\mathbf{R}(g_*f_*) \xrightarrow{\sim} \mathbf{R}g_*\mathbf{R}f_*.$$

Proof. See [KaSc, Prop. 13.3.13 (ii)].

Remark. Similar statements apply to right exact functors. See [KaSc, Remark 13.3.14].

References

[BBD] A. A. BEILINSON, J. BERNSTEIN, P. DELIGNE, *Faisceaux pervers*, Analyse et topologie sur les espaces singulares, Asrérisque **100** (1982), 1-171.

[GeMa] S. I. GELFAND, Y. I. MANIN, Methods of Homological Algebra, Springer Monographs in Mathematics, New York (second edition 2003).

[KaSc] M. KASHIWARA, P. SCHAPIRA, Categories and Sheaves, Grundlehren der mathematischen Wissenshaften 332, Springer-Verlag, Berlin (2006).

[Neeman] A. NEEMAN, Triangulated categories, Annals of Mathematics Studies 148, Princeton University Press, Princeton, NJ (2001).

Department of Mathematics, University of Wisconsin, Madison, WI 53706 E-mail address: virk@math.wisc.edu