
SUMMARY OF SOME CONSTRUCTIONS IN DERIVED
CATEGORIES

R. VIRK

1. Review of categories and functors

Let F,G : A → B be functors between categories A and B. A morphism of
functors φ : F → G consists of a morphism φX : F (X) → G(X) for each X ∈ A,
such that φY ◦ F (f) = G(f) ◦ φX for every morphism f : X → Y . The terms
‘functorial’, ‘natural’ and ‘canonical’ will be used as synonyms for ‘a morphism of
functors’. The identity endomorphism of a functor F will be denoted 1F .

1.1. A functor F : A → B is full if the map it induces on Hom sets is surjective;
it is faithful if the induced map is injective. It is an equivalence if there exists
a functor G : B → A such that FG and GF are canonically isomorphic to idB

and idA, respectively. In this situation the functors F and G are mutually inverse
equivalences. An equivalence is necessarily full and faithful. Moreover:

Proposition. Let F : A → B be a full and faithful functor. Then F is an equiva-
lence if and only if every object Y ∈ B is isomorphic to F (X) for some X ∈ A.

Proof. See [KaSc, Prop. 1.3.13]. �

1.2. Yoneda lemma. Let A be a category. Let Set be the category of sets. Let
Funct(A, Set) be the category of functors A → Set. A functor F ∈ Funct(A, Set)
is representable if F ' HomA(X,−) for some object X ∈ A. In this situation, the
object X is said to represent F .

Lemma (Yoneda lemma). The functor

A→ Funct(A, Set), X 7→ HomA(X,−)

defines an equivalence of A with the full subcategory of representable functors in
Funct(A, Set).

Proof. See [KaSc, Prop. 1.4.3]. �

1.3. Additive categories. A category A is additive if all Hom sets are equipped
with an abelian group structure such that composition of morphisms is bilinear and
if all finite products exist in A. The empty product gives a terminal object in A.
For X, Y ∈ A, the maps X

id←− X
0−→ Y give a unique map X → X × Y . Similarly,

there is a unique map Y → X×Y . Consequently, finite products coincide with the
corresponding coproducts. In particular, the terminal object is also initial and is
hence a zero object.

Let B be another additive category. An additive functor A→ B is a functor F
such that F (f + g) = F (f) + F (g) for all morphisms f, g ∈ A. Functors between
additive categories will always be assumed to be additive.
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1.4. Abelian categories. An additive category is abelian if it possesses all kernels,
cokernels and if every monomorphism is the kernel of some morphism and every
epimorphism is the cokernel of some morphism. See [KaSc, Ch. 8] for details. Let

A be an abelian category. A sequence of maps X0
f0−→ X1

f1−→ · · · fn−→ Xn+1, in
A, is an exact sequence if the image of fi is equal to the kernel of fi+1 for each
0 ≤ i < n. An exact sequence 0 → X → Y → Z → 0 is also referred to as a short
exact sequence.

Let B be another abelian category. A functor F : A→ B is left exact if for each
exact sequence 0 → X → Y in A, the sequence 0 → F (X) → F (Y ) is exact in B.
Similarly, F is right exact if for each exact sequence X → Y → 0 in A, the sequence
F (X)→ F (Y )→ 0 is exact in B. The functor F is exact if it is both left and right
exact.

The Grothendieck group K0(A) is the free abelian group on symbols [X], X ∈ A,
modulo the relation [X] = [X1] + [X2] for each short exact sequence 0 → X1 →
X → X2 → 0. Consequently, if X• = · · · → Xi → · · · is a bounded complex in A,
then

∑
i(−1)i[Xi] =

∑
i(−1)i[Hi(X•)] in K0(A).

Let {Li} be a set of objects in A such that the classes [Li] comprise a basis of
K0(A). Then for M ∈ A, we write [M : Li] for the coefficient of Li when [M ] is
expanded in terms of the basis {[Li]}, i.e., [M ] =

∑
i[M : Li][Li].

A simple object or an object of length one is an object L ∈ A such that any
monomorphism A→ L is either 0 or an isomorphism. For n ≥ 2, objects of length
n are inductively defined to be those objects X that fit into an exact sequence
0 → X ′ → X → L → 0, with X ′ of length n − 1 and L simple. If every object
in A has finite length, then the Jordan-Hölder theorem holds in A, i.e., for an
object X ∈ A, the length of X is well defined and the simple objects that occur
in a ‘composition series’ of X are unique up to isomorphism and permutation (see
[KaSc, Exer. 8.20]).

1.5. Complexes. Let A be an additive category. A complex X• in A is the data
of a Z-graded object X• =

⊕
i∈Z Xi, Xi ∈ A and a degree 1 endomorphism dX :

X• → X• such that d2
X = 0. This is usually visualized as a sequence of morphisms

· · · → Xi di−→ Xi+1 → · · · , such that di+1 ◦ di = 0 for each i. The object Xi is in
degree i and the morphisms di are those induced by dX . The endomorphism dX is
the differential of X•. If A is an abelian category, the cohomology H∗(X•) of X•

is the sequence of objects (in A): Hi(X•) = ker(di)
im(di−1)

.
A chain map is a graded morphism f : X• → Y • of degree 0 such that dY f =

fdX . Let f, g : X• → Y • be chain maps. Then f and g are homotopic if there
exists a graded morphism s : X• → Y • of degree −1 such that dY s + sdX = f − g.
The map s is a homotopy between f and g. Further, we say that f and g are in the
same homotopy class. In the setting of abelian categories, homotopic maps induce
the same maps on cohomology (see [KaSc, Lemma 12.2.2]).

Denote by Comp(A) the category of all complexes, by Comp−(A) the category of
bounded above complexes, by Comp+(A) the category of bounded below complexes
and by Compb(A) the category of bounded complexes, in A. As each object of A

is a complex concentrated in degree 0 we obtain a full and faithful embedding
A ↪→ Comp(A).

The shift functor [1] : Comp(A) → Comp(A) is defined as follows: if X• is a
complex with differential di, then (X•[1])i = Xi+1 with differential d′i = −di+1. It
is clear that [1] is a self-equivalence of Comp(A). For n ∈ Z, set [n] = [1]n.
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Let X•, Y • be complexes in A with differentials d′i and d′′i , respectively. Let
φ : X• → Y • be a chain map. The cone of φ is

cone(φ)i = Y i ⊕Xi+1 with differential di =
(

d′′i φi+1

0 −d′i+1

)
. (1.1)

Define ι : Y • → cone(φ) by Y i
( id

0 )
−−−→ Y i ⊕Xi+1 and δ : cone(φ) → X•[1] by Y i ⊕

Xi+1 ( 0 id )−−−−→ Xi+1. Both inc and δ are chain maps. A standard triangle is a
sequence of morphisms of the form

X• φ−→ Y • ι−→ cone(φ) δ−→ X•[1]. (1.2)

2. Triangulated categories

A triangulated category is an additive category endowed with an auto-equivalence
and a family of so-called distinguished triangles satisfying certain axioms. This sub-
ject deserves a whole book such as [Neeman]. I will not try to give an introduction
to triangulated categories. However, I only assume that the reader is familiar with
the axiomatics and basic properties of a triangulated category at the level of [KaSc,
Ch. 10 §1]. The purpose of the remainder of this note is to recall a few specific
constructions.

2.1. The shift functor in a triangulated category will be denoted by [1]. For
n ∈ Z, set [n] = [1]n. Let T be a triangulated category. A distinguished triangle
X → Y → Z → X[1] will often be written as X → Y → Z  . Further, Z will be
referred to as the cone of the map X → Y . Similarly, X will be referred to as the
cocone of the map Y → Z.

2.2. The Grothendieck group K0(T) is the free abelian group on symbols [X],
X ∈ T, modulo the relation [X] = [X1] + [X2] for each distinguished triangle
X1 → X → X2  . In particular, [X[1]] = −[X] (see [KaSc, §10.1, TR3]).

2.3. Let T′ be another triangulated category. A triangulated or an exact functor
T → T′ is the data of a functor F that preserves distinguished triangles and a
canonical isomorphism F ◦[1] ∼−→ [1]◦F . A morphism F → F ′ between triangulated
functors is a natural transformation θ such that the following diagram commutes

F ◦ [1]
θ◦[1]
//

∼
��

F ′ ◦ [1]

∼
��

[1] ◦ F
[1]◦θ
// [1] ◦ F ′

All natural transformations between triangulated functors will tacitly be assumed
to be morphisms of triangulated functors.

2.4. Cohomological functors. Let A be an abelian category. A functor H : T →
A is cohomological if, for every distinguished triangle X → Y → Z  in T, the
sequence H(X)→ H(Y )→ H(Z) is exact in A.

Proposition. Let T be a triangulated category and let X ∈ T. The functors
HomT(X,−) and HomT(−, X) are cohomological.

Proof. See [KaSc, Prop. 10.1.13]. �



4 R. VIRK

2.5. Let T be a triangulated category. Let A,B ⊂ T be subcategories of T. For
X ∈ T, write [X] ∈ A if there exists an object in A that is isomorphic to X. Set

A ∗B = {Y ∈ T | there is a distinguished triangle X → Y → Z  ,

with [X] ∈ A and [Z] ∈ B}.

Lemma ([BBD, Lemme 1.3.10]). The operation ∗ is associative. That is, if A,B
and C are subcategories of T, then (A ∗B) ∗ C = A ∗ (B ∗ C).

Proof. Suppose [X] ∈ (A ∗ B) ∗ C. Then there is some X ′ ∈ T and distinguished
triangles A→ X ′ → B  and X ′ → X → C  , with [A] ∈ A, [B] ∈ B and [C] ∈ C.
Apply the octahedron axiom (see [KaSc, Def. 10.1.6 TR5]) to the composition A→
X ′ → X to obtain distinguished triangles A→ X → BC  and B → X ′′ → C  ,
with X ′′ ∈ T. Thus, [X] ∈ A∗(B∗C). The reverse inclusion is proved similarly. �

Let A ⊆ T be a subcategory. Inductively define A∗i, i ∈ Z≥0, by A∗0 = 0
and A∗i+1 = A ∗ A∗i. As ∗ is associative, A∗i+1 = A ∗ A∗i = A∗i ∗ A. Further,
A∗i ⊆ A∗i+1. Set A∗∞ =

⋃
i∈Z≥0

A∗i.

2.6. Filtrations. An object X ∈ T is filtered by objects Y1, . . . , Yn if there exists
a sequence of objects 0 = X0, X1, . . . , Xn = X and distinguished triangles Xi−1 →
Xi → Yi  .

Lemma. Let A ⊂ T be a subcategory. Then X ∈ T is in A∗n if and only if X is
filtered by some Y1, . . . , Yn ∈ A.

Proof. This is clear if one proceeds by induction on n. �

Remark. Filtrations in triangulated categories are most commonly used in the fol-
lowing situation: let H be a cohomological functor. Let X be filtered by Y1, . . . , Yn.
By definition, there is a sequence of objects 0 = X0, . . . , Xn = X and distinguished
triangles Xi−1 → Xi → Yi  . Assume that H(Yi[m]) = 0 for all m ∈ Z and
1 ≤ i ≤ n. Then, proceeding by induction on n, it follows that H(X[m]) = 0 for
all m ∈ Z.

2.7. Localization. Let T be a triangulated category. Let N ⊂ T be a localizing
subcategory, i.e., N satisfies the following properties:

• 0 ∈ N;
• N ∈ N if and only if N [1] ∈ N;
• if N → M → N ′  is a distinguished triangle in T with N,N ′ ∈ N, then

M ∈ N.
An N-quasi-isomorphism, or simply quasi-isomorphism if the N is clear, is a mor-
phism s : X → Y in T such that there is a distinguished triangle X

s−→ Y −→ Z  
with Z ∈ N. Let N−qis denote the collection of N-quasi-isomorphisms. A roof
(s, f) is a diagram of the form X

s←− X ′ f−→ Y , with s ∈ N−qis. Define an equiv-

alence relation on roofs by declaring X
s←− X ′ f−→ Y and X

t←− X ′′ g←− Y to be
equivalent if there exists a third roof X ′ r←− Z

h−→ X ′′ such that the following
diagram commutes

Z
r
~~

h
!!

X ′
s

}} f **

X ′′

t
tt

g

""

X Y

This equivalence relation is reflexive, symmetric and transitive (see [GeMa, Ch. 3
§2, Lemma 8 (a)] or [KaSc, Lemma 7.1.12])
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Given roofs X
s←− X ′ f−→ Y and Y

t←− Y ′ g−→ Z, there is a roof X ′ t′←− X ′′ f ′−→ Y ′

such that the following diagram commutes

X ′′
t′

||

f ′

""

X ′
s

}}

f

""

Y ′
t

||

g

  

X Y Z

The roof X
st′←−− X ′′ gf ′−−→ Z is defined to be the composition of X

s←− X ′ f−→ Y and
Y

t←− Y ′ g−→ Z. This operation is well defined and associative on equivalence classes
of roofs. For details see [GeMa, Ch. 3 §2 Lemma 8 (b)] or [KaSc, Lemma 7.1.13].

The localization of T with respect to N, denoted T/N, is the following category:
• Objects(T/N) = Objects(T);

• HomT/N(X, Y ) = equivalence classes of roofs X
s←− X ′ f−→ Y ,

with composition of roofs defined as above.
The localization functor quot : T → T/N is defined to be the identity on objects

and by sending f : X → Y in T to the roof X
id←− X

f−→ Y . We abuse notation and
write [1] : T/N→ T/N for the image of [1] : T → T under quot.

Proposition. Define distinguished triangles in T/N as sequences equivalent to the
image (under quot) of a distinguished triangle in T.

(i) T/N is a triangulated category and quot : T → T/N is a triangulated
functor.

(ii) If N ∈ N, then quot(N) = 0.
(iii) Let T′ be a triangulated category and let F : T → T′ be a triangulated

functor such that F (N) = 0 for each N ∈ N. Then F factors uniquely
through quot.

Proof. See [KaSc, Thm. 10.2.3]. �

2.8. The homotopy category. Let A be an additive category. The homotopy
category of A, denoted Ho(A), is defined as follows:

• Objects(Ho(A)) = Objects(Comp(A));
• HomHo(A)(X•, Y •) = homotopy classes of maps in HomComp(A)(X•, Y •).

Replacing Comp(A) by Comp+(A), Comp−(A) or Compb(A) in the definition
above we obtain the variants Ho+(A), Ho−(A) and Hob(A), respectively.

Theorem. Let [1] : Ho(A) → Ho(A) be the shift functor on complexes. Define
distinguished triangles in Ho(A) to be triangles isomorphic to (1.2). This endows
Ho(A) with the structure of a triangulated category.

Proof. See [KaSc, Thm. 11.2.6]. �

Proposition. Let A be an abelian category For n ∈ Z, let Hn : Ho(A)→ A be the
functor that associates to a complex its nth cohomology. Then Hn is cohomological.

Proof. See [KaSc, Cor. 12.2.5]. �

2.9. The derived category. Let A be an abelian category. Let N ⊂ Ho(A) be the
subcategory consisting of complexes X• such that Hi(X•) = 0 for all i ∈ Z. Then N

is a localizing subcategory (for details see [KaSc, Ch. 13 §1]). So we are in the setting
of Prop. 2.7. The derived category of A, denoted D(A), is the triangulated category
Ho(A)/N. Replacing Ho(A) by Ho+(A), Ho−(A) or Hob(A) in this definition, we
obtain the variants D+(A), D−(A) and Db(A), respectively. The category Db(A)
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(resp. D+(A), resp. D−(A)) is equivalent to the full subcategory of D(A) consisting
of complexes X• such that Hn(X•) = 0 for |n| >> 0 (resp. n << 0, resp. n >> 0),
see [KaSc, Prop. 13.1.12] for details.

Proposition. For n ∈ Z, let Hn : D(A) → A be the functor that sends a complex
to its nth cohomology. Then Hn is cohomological.

Proof. See [KaSc, Prop. 13.1.5]. �

2.10. Exact sequences and distinguished triangles.

Proposition. Let 0→ X
f−→ Y

g−→ Z → 0 be an exact sequence in Comp(A). Then

there exists a distinguished triangle X
f−→ Y

g−→ Z  in D(A).

Proof. See [KaSc, Prop. 13.1.13] �

2.11. Hom in the derived category. Let X, Y ∈ D(A). Set Extk
A(X, Y ) =

HomD(A)(X, Y [k]). An object X ∈ A is also an object of D(A), since X is a
complex concentrated in degree 0.

Proposition. Let X, Y ∈ A. Then
(i) Extk

A(X, Y ) = 0 for k < 0;
(ii) Ext0A(X, Y ) ' HomA(X, Y ). That is, the natural functor A → D(A) is

full and faithful.

Proof. See [KaSc, Prop. 13.1.10]. �

2.12. Relation between Grothendieck groups. The embedding A → Db(A)
induces a map K0(A) → K0(Db(A). This map is an isomorphism, the inverse
is given by [X•] 7→

∑
i∈Z(−1)i[Hi(X•)]. The groups K0(A) and K0(Db(A)) are

identified via this isomorphism.

2.13. Yoneda Ext. Let X, Y ∈ A. Let Z = 0→ Y → Z1 → · · · → Zn → X → 0
be an exact sequence in A. Define θ(Z) ∈ Extn

A(X, Y ) by the roof

0 // 0 // 0 // · · · // X // 0

0 //

OO

��

Y //

OO

Z1
//

OO

��

· · · // Zn
//

OO

��

0

OO

��

0 // Y // 0 // · · · // 0 // 0

(The top vertical arrow is a quasi-isomorphism).

Proposition. Each element of Extn
A(X, Y ) is of the form θ(Z) for some exact

sequence Z = 0→ Y → Z1 → · · · → Zn → X → 0 in A. Further:
(i) θ(Z) = 0 if and only if there exists a commutative diagram with exact rows

0 // 0 //

��

Z1
// Z ′

2
//

��

· · · // Zn
//

��

X //

��

0

0 // Y // Z1
// Z2

// · · · // Zn
// X // 0

(ii) If Z ′ = 0 → Y → Z ′
1 → · · · → Z ′

n → X → 0 is another exact sequence in
A, then θ(Z) = θ(Z ′) if and only if there exists a commutative diagram

0 // Y // Z1
//

��

· · · // Zn
//

��

X // 0

0 // Y // Z ′
1

// · · · // Z ′
n

// X // 0
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Proof. For the first statement and (i), see [KaSc, Exer. 13.16] or [GeMa, Ch. III §5,
Thm. 5 (c)]. (ii) is a restatement of the equivalence relation on roofs (see §2.7). �

Corollary. Let Z = 0 → Y → Z1 → X → 0 be a short exact sequence. Then
θ(Z) ∈ Ext1A(X, Y ) is zero if and only if Z is split exact.

2.14. Cup product. Let Z ′ = 0 → Y ′ → Z1 → · · · → Zm → Y → 0 and
Z = 0→ Y → Zm+1 → · · · → Zm+n → X → 0 be exact sequences in A. Let Z ′∪Z
denote the exact sequence 0→ Z1 → · · · → Zm → Zm+1 → · · · → Zm+n → X → 0.

Proposition. θ(Z ′ ∪ Z) = θ(Z ′) ◦ θ(Z).

Proof. See [GeMa, Ch. 3 §5, Thm. 5 (c)]. �

2.15. Projectives and injectives. Let A be an abelian category. An object
P ∈ A is projective if HomA(P,−) is exact. The category A has enough projectives
if for any A ∈ A there exists an epimorphism P � A with P projective. Let
PL � L be an epimorphism with PL projective and L ∈ A simple. Then PL is
a projective cover of L if PL is indecomposable (i.e., PL cannot be written as a
non-trivial direct sum). A projective cover is unique up to isomorphism.

An object I ∈ A is injective if HomA(−, I) is exact. The category A has enough
injectives if for any A ∈ A there exists a monomorphism A ↪→ I with I injective.
Let L ↪→ IL be a monomorphism with IL injective and L ∈ A simple. Then IL

is an injective hull of L if IL is indecomposable. An injective hull is unique up to
isomorphism.

Proposition. Let A be an abelian category. Let X ∈ A. The following are equiv-
alent:

(i) X is projective.
(ii) Ext1A(X, Y ) = 0 for all Y ∈ A.
(iii) Extn

A(X, Y ) = 0 for all Y ∈ A and all n 6= 0.

Similarly, the following are equivalent:

(i) X is injective.
(ii) Ext1A(Y, X) = 0 for all Y ∈ A.
(iii) Extn

A(Y, X) = 0 for all Y ∈ A and all n 6= 0.

Proof. See [GeMa, Ch. III §5, Lemma 10]. �

Remark. Let A and B be abelian categories. Let f∗ : A → B be right adjoint
to f∗ : B → A. Assume that f∗ is exact. Let P ∈ B be projective. Then f∗P is
projective in A, since HomA(f∗P,−) ' HomB(P, f∗−). A similar statement holds
for injectives.

2.16. Derived categories as homotopy categories.

Proposition. Let A be an abelian category. Let N ⊂ Ho(A) be the subcategory
consisting of complexes X• such that Hi(X•) = 0 for all i ∈ Z. Let I be a full
subcategory of A such that for any X ∈ A, there exists I ∈ I and a monomorphism
X ↪→ I. Then

(i) for any X ∈ Ho+(A), there exists I ∈ Ho+(I) and a quasi-isomorphism
s : X → I;

(ii) let N′ = N ∩ Ho+(I). The obvious functor Ho+(I)/N′ → D+(A) is a
triangulated equivalence of categories.

Proof. (i) is [KaSc, Lemma 13.2.1], (ii) is [KaSc, Prop. 13.2.2 (i)]. �
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Lemma. Let A be an abelian category. Let I ⊆ A be the full subcategory consisting
of injective objects. Let I• ∈ Comp+(I). Let X• ∈ Comp(A) be such that the
cohomology of X• is zero in every degree. Let f : X• → I• be a chain map. Then
f is homotopic to zero.

Proof. See [KaSc, Lemma 13.2.4]. �

Combining Prop. 2.16 and Lemma 2.16 we get:

Theorem. Let A be an abelian category and let I be the full subcategory of A

consisting of injective objects. If A has enough injectives, then Ho+(I) is equivalent
to D+(A) as a triangulated category.

Proof. See [KaSc, Prop. 13.2.3]. �

Assume we are in the situation of Prop. 2.16 (i), i.e., we are given a quasi-
isomorphism s : X → I with X ∈ Ho+(A) and I ∈ Ho+(I), then I is a resolution
of X by objects in I.

2.17. Derived functors. Let A and B be abelian categories and let f∗ : A → B

be a left exact functor. A full additive subcategory I of A is f∗-injective if:

(i) for every object X ∈ A there is a monomorphism X ↪→ I with I ∈ I;
(ii) if 0 → X → Y → Z → 0 is an exact sequence in A, and if X, Y are in I,

then Z is also in I;
(iii) if 0→ X → Y → Z → 0 is an exact sequence in A with X, Y, Z ∈ I, then

0→ f∗X → f∗Y → f∗Z → 0 is exact in B.

If A has enough injectives, then the full subcategory of injective objects in A is
f∗-injective for any left exact functor f∗ (see [KaSc, Remark 13.3.6 (iii)]).

Let N ⊂ Ho(A) be the subcategory consisting of complexes whose cohomology
vanishes in every degree. Suppose an f∗-injective subcategory I ⊆ A exists. Set
N′ = N ∩ Ho+(I). Since f∗ preserves exact sequences consisting of objects in I, it
follows that f∗ transforms objects of Ho+(I) quasi-isomorphic to zero into objects
of Ho+(B) satisfying the same property. Therefore, f∗ : Ho+(I)→ Ho+(B) factors
through Ho+(I)/N′. Let i : Ho+(I)/N′ ∼−→ D+(A) be the equivalence inverse to the
one described in Prop. 2.16 (i.e., if X ∈ D+(A), then iX is a resolution of X by
objects in I). The right derived functor Rf∗ : D+(A)→ D+(B) is defined to be the
composition

D+(A) i−→ Ho+(I)/N′ f∗−→ Ho+(B)
quot−−−→ D+(B). (2.1)

The derived functor Rf∗ is unique up to canonical isomorphism, in particular it
does not depend on the choice of the f∗-injective subcategory I (see [KaSc, Prop.
13.3.5]).

Proposition. Let A,B and C be abelian categories. Let f∗ : A→ B and g∗ : B→ C

be left exact functors. Assume that there exist full additive subcategories I ⊆ A and
I′ ⊆ B such that I is f∗-injective, I′ is g∗-injective and f∗I ⊆ I′. Then I is g∗f∗-
injective and induces an isomorphism

R(g∗f∗)
∼−→ Rg∗Rf∗.

Proof. See [KaSc, Prop. 13.3.13 (ii)]. �

Remark. Similar statements apply to right exact functors. See [KaSc, Remark
13.3.14].
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