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Tensor products

Let A be a ring (commutative with unity), L, M and N three A-modules. We say that a map
@ : M x N — L is bilinear if fixing either of the entries it is A-linear in the other, that is if:

o+, y) = olz,y) + 0@, y), @laz,y) = ap(z,y),
oz, y+y) =o(@,y) +o(x,y), o a)=ap(z,y).

Write L(M, N; L) or Lo(M, N; L) for the set of all bilinear maps from M x N to L; this has an
A-module structure (since A is commutative).

If g: L — L' is an A-linear map and ¢ € L(M, N; L) then goyp € L(M,N;L"). For given M
and N, consider a bilinear map ® : M x N — Lg having the following property, where we write
x ® y instead of ®(x,y): for any A-module L and any ¢ € L(M,N; L) there exists a unique
A-linear map g : Lo — L satisfying

9(x®y) — (z,y).

If this holds we say that Lg is the tensor product of M and N over A, and write Lo = M ® 4 N;
we sometimes omit A and write M @ N. M ® N assuming it exists is uniquely determined (upto
isomorphism). To prove existence, write F' for the free A-module with basis the set M x N, and
let R C F be the submodule generated by all elements of the form

(CC + l’/,y) - (l‘,y) - (xlvy)v (a’xvy) - CL(CC,y)
(:c,y—l—y/)—(x,y)—(x,y/), (xvay)_a(xvy)'

Now set Lo = F'/R and write x ® y for the image in Lo of (z,y) € F. It follows that Ly and ®
satisfy the condition for the tensor product.

Note that the general element of M ® N is a sum of the form »_ z;®y;, and cannot necessarily
be written as * ® y.

For A-modules M, N and L the definition of the tensor product gives that:

Homa(M ® N,L) = L(M,N;L). (1)

The canonical isomorphism is obtained by taking an element ¢ of the right-hand side to the
element g of the left-hand side satisfying g(z ® y) = ¢(z,y).

We can define multilinear maps from an r-fold product of A-modules M, ..., M, to an A-
module L just as in the bilinear case, and get modules L(Mj,...,M,;L) and M; ® --- ® M,;
the following associative law then holds:

MeoMHYM'=MeoM @M"=Me (M @ M"). (2)



the following also hold

M&N=N® M. (3)
M®A=M. (4)
(©AM)) ® N = ©\(M\® N). (5)

If f: M — M and g: N — N’ are both A-linear then (z,y) — f(z) ® g(y) is a bilinear map
from M x N to M’ ® N’, and so it defines a linear map M ® N — M’ ® N’, which we denote
f ® g. By definition we have:

(f® 9)(2 T ®Y;) = Zf(fﬁi) ® g(yi)- (6)

If f and g are surjective then so is f ® g with kernel generated by {z @ y|f(x) = 0 or g(y) = 0}.
To see this, let T C M ® N be the submodule generated by this set; clearly T' C ker(f ® g)
so that f ® g induces a linear map « : (M ® N)/T — M' ® N’; furthermore, we can define a
bilinear map M’ x N' — (M ® N)/T by

f@y) = (@@y modT),  where f(z)=2"g(y) =Y,

the map is well defined as a different choice of inverse images = and y leads to a difference that
belongs to 7. This map in turn defines a linear map 3 : M’ @ N' — (M ® N) /T, which is clearly
an inverse of a.

We may reformulate this as (writing 1 for the identity maps):

Suppose given exact sequences

0 - K - M

0 - L
then M' @ N' = (M ® N)/T, where

T=>G(®1)(KoN)+ (1) (ML)

It now follows that if

My - My - M -0
is an exact sequence then so is

f®l g®1

Mi®@N — My@N —— M3s® N 0.

Change of coefficient ring

Let A and B be rings (commutative with identity), and P a two-sided A — B module; that is
for a € A, b € b and x € P the products ax and xb are defined, and in addition to the usual
conditions for A-modules and B-modules we assume that (ax)b = a(zb). Then multiplication
by an element b € B induces an A-linear map of P to itself, which we continue to denote by b.
This determines a map 1 ®b: M @4 P — M ®4 P for any A-module M, and by definition we
take this to be scalar multiplication by b in M ® 4 P; that is, we set (>_y; ® ;)b = > y; ®@ ;b
for y; € M and z; € P.



If N is a B-module, then for ¢ € Homp(P, N) we define the product pa of ¢ and a € A by
(pa)(x) = p(ax) for z € P;

we have pa € Homp(P, N), and this makes Homp(P, N) into an A-module. It is easy to show
the following:

Homa(M,Homp(P,N)) =2 Homp(M ®4 P, N). (7)
(M®@y P)@p N2 M®s(P®pN). (8)

Given a ring homomorphism A : A — B, we can think of B as a two-sided A — B module by
setting ab = A(a)b; then for any A-module M, M ® 4 B is a B-module, called the extension of
scalars in M from A to B, and written Mpg). For A-modules M and M’ the following formula
holds, so that tensor product commutes with change of scalars.

(M ®4B)®g (M ®4B)=(M®sM)®4B. (9)

Tensor product of A-algebras

We will assume that all ring homomorphisms take unit elements to unit elements. Given a ring
homomorphism A : A — B we say that B is an A-algebra. Let B’ be another A-algebra defined
by M : A — B’. We say that a map f : B — B’ is a homomorphism of A-algebras if it is a ring
homomorphism satisfying N’ = f o \. If B and C are A-algebras, then we can take the tensor
product B®4 C of B and C as A-modules and this is again an A-algebra, with product given
by

<Z bi ® ci> Zb; @c | = Zbib;' ® ¢ic,
i J 0]

and the ring homomorphism A — B ® C given by a — a ® 1 = 1 ® a. The fact that the above
product is well-defined can be seen by using the bilinearity of bb’ ® c¢’ with respect to both (b, ¢)
and (b',c’). The algebra B ® C contains B ® 1 and 1 ® C as subalgebras and is generated by
these. Note that B ® 1 is not necessarily isomorphic to B.
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