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Tensor products

Let A be a ring (commutative with unity), L,M and N three A-modules. We say that a map
ϕ : M ×N → L is bilinear if fixing either of the entries it is A-linear in the other, that is if:

ϕ(x + x′, y) = ϕ(x, y) + ϕ(x′, y), ϕ(ax, y) = aϕ(x, y),
ϕ(x, y + y′) = ϕ(x, y) + ϕ(x, y′), ϕ(x, ay) = aϕ(x, y).

Write L(M,N ;L) or LA(M,N ;L) for the set of all bilinear maps from M ×N to L; this has an
A-module structure (since A is commutative).

If g : L → L′ is an A-linear map and ϕ ∈ L(M,N ;L) then g ◦ϕ ∈ L(M,N ;L′). For given M
and N , consider a bilinear map ⊗ : M ×N → L0 having the following property, where we write
x ⊗ y instead of ⊗(x, y): for any A-module L and any ϕ ∈ L(M,N ;L) there exists a unique
A-linear map g : L0 → L satisfying

g(x⊗ y) → ϕ(x, y).

If this holds we say that L0 is the tensor product of M and N over A, and write L0 = M ⊗A N ;
we sometimes omit A and write M ⊗N . M ⊗N assuming it exists is uniquely determined (upto
isomorphism). To prove existence, write F for the free A-module with basis the set M ×N , and
let R ⊂ F be the submodule generated by all elements of the form

(x + x′, y)− (x, y)− (x′, y), (ax, y)− a(x, y)
(x, y + y′)− (x, y)− (x, y′), (x, ay)− a(x, y).

Now set L0 = F/R and write x⊗ y for the image in L0 of (x, y) ∈ F . It follows that L0 and ⊗
satisfy the condition for the tensor product.

Note that the general element of M⊗N is a sum of the form
∑

xi⊗yi, and cannot necessarily
be written as x⊗ y.

For A-modules M,N and L the definition of the tensor product gives that:

HomA(M ⊗N,L) ∼= L(M,N ;L). (1)

The canonical isomorphism is obtained by taking an element ϕ of the right-hand side to the
element g of the left-hand side satisfying g(x⊗ y) = ϕ(x, y).

We can define multilinear maps from an r-fold product of A-modules M1, . . . ,Mr to an A-
module L just as in the bilinear case, and get modules L(M1, . . . ,Mr;L) and M1 ⊗ · · · ⊗ Mr;
the following associative law then holds:

(M ⊗M ′)⊗M ′′ = M ⊗M ′ ⊗M ′′ = M ⊗ (M ′ ⊗M ′′). (2)
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the following also hold

M ⊗N ∼= N ⊗M. (3)
M ⊗A = M. (4)
(⊕λMλ)⊗N = ⊕λ(Mλ ⊗N). (5)

If f : M → M ′ and g : N → N ′ are both A-linear then (x, y) 7→ f(x) ⊗ g(y) is a bilinear map
from M ×N to M ′ ⊗N ′, and so it defines a linear map M ⊗N → M ′ ⊗N ′, which we denote
f ⊗ g. By definition we have:

(f ⊗ g)(
∑

i

xi ⊗ yi) =
∑

i

f(xi)⊗ g(yi). (6)

If f and g are surjective then so is f ⊗ g with kernel generated by {x⊗ y|f(x) = 0 or g(y) = 0}.
To see this, let T ⊂ M ⊗ N be the submodule generated by this set; clearly T ⊆ ker(f ⊗ g)
so that f ⊗ g induces a linear map α : (M ⊗ N)/T → M ′ ⊗ N ′; furthermore, we can define a
bilinear map M ′ ×N ′ → (M ⊗N)/T by

f(x′, y′) 7→ (x⊗ y mod T ), where f(x) = x′, g(y) = y′,

the map is well defined as a different choice of inverse images x and y leads to a difference that
belongs to T . This map in turn defines a linear map β : M ′⊗N ′ → (M ⊗N)/T , which is clearly
an inverse of α.

We may reformulate this as (writing 1 for the identity maps):
Suppose given exact sequences

0 - K
i

- M
f

- M ′ - 0

0 - L
j

- N
g

- N ′ - 0

then M ′ ⊗N ′ ∼= (M ⊗N)/T , where

T = (i⊗ 1)(K ⊗N) + (1⊗ j)(M ⊗ L).

It now follows that if

M1
f

- M2
g

- M3
- 0

is an exact sequence then so is

M1 ⊗N
f ⊗ 1

- M2 ⊗N
g ⊗ 1

- M3 ⊗N - 0.

Change of coefficient ring

Let A and B be rings (commutative with identity), and P a two-sided A − B module; that is
for a ∈ A, b ∈ b and x ∈ P the products ax and xb are defined, and in addition to the usual
conditions for A-modules and B-modules we assume that (ax)b = a(xb). Then multiplication
by an element b ∈ B induces an A-linear map of P to itself, which we continue to denote by b.
This determines a map 1⊗ b : M ⊗A P → M ⊗A P for any A-module M , and by definition we
take this to be scalar multiplication by b in M ⊗A P ; that is, we set (

∑
yi ⊗ xi)b =

∑
yi ⊗ xib

for yi ∈ M and xi ∈ P .
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If N is a B-module, then for ϕ ∈ HomB(P,N) we define the product ϕa of ϕ and a ∈ A by

(ϕa)(x) = ϕ(ax) for x ∈ P ;

we have ϕa ∈ HomB(P,N), and this makes HomB(P,N) into an A-module. It is easy to show
the following:

HomA(M,HomB(P,N)) ∼= HomB(M ⊗A P,N). (7)
(M ⊗A P )⊗B N ∼= M ⊗A (P ⊗B N). (8)

Given a ring homomorphism λ : A → B, we can think of B as a two-sided A−B module by
setting ab = λ(a)b; then for any A-module M , M ⊗A B is a B-module, called the extension of
scalars in M from A to B, and written M(B). For A-modules M and M ′ the following formula
holds, so that tensor product commutes with change of scalars.

(M ⊗A B)⊗B (M ′ ⊗A B) = (M ⊗A M ′)⊗A B. (9)

Tensor product of A-algebras

We will assume that all ring homomorphisms take unit elements to unit elements. Given a ring
homomorphism λ : A → B we say that B is an A-algebra. Let B′ be another A-algebra defined
by λ′ : A → B′. We say that a map f : B → B′ is a homomorphism of A-algebras if it is a ring
homomorphism satisfying λ′ = f ◦ λ. If B and C are A-algebras, then we can take the tensor
product B ⊗A C of B and C as A-modules and this is again an A-algebra, with product given
by (∑

i

bi ⊗ ci

)∑
j

b′
j ⊗ c′

j

 =
∑
i,j

bib
′
j ⊗ cic

′
j ,

and the ring homomorphism A → B ⊗ C given by a 7→ a⊗ 1 = 1⊗ a. The fact that the above
product is well-defined can be seen by using the bilinearity of bb′⊗ cc′ with respect to both (b, c)
and (b′, c′). The algebra B ⊗ C contains B ⊗ 1 and 1 ⊗ C as subalgebras and is generated by
these. Note that B ⊗ 1 is not necessarily isomorphic to B.
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