SPRINGER'S HOMOTOPY ARGUMENT

R. VIRK

In what follows 'variety' = 'scheme' = 'separated scheme of finite type over \mathbf{C} '. A point will always mean a closed point. By sheaf we mean a constructible sheaf (in the analytic topology) of vector spaces over some algebraically closed field (which may as well be assumed to be \mathbf{C}). We write $\mathbf{R}f_*$ for the right derived functor of the direct image functor associated to a continuous map f and we write $\mathbf{R}^i f_*$ for the *i*th-cohomology of $\mathbf{R}f_*$.

The terms 'functorial', 'natural' and 'canonical' will be used as synonyms for 'a morphism of functors'. For a functor F, we write $\mathbb{1}_F$ for the identity endomorphism of F.

1.1. Let V be a variety, $\alpha: \mathbb{C}^* \times V \to V$ a \mathbb{C}^* -action. Let $\pi: \mathbb{C}^* \times V \to V$ be the projection map. A \mathbb{C}^* -equivariant sheaf on V is a tuple (\mathcal{A}, σ) , where \mathcal{A} is a sheaf on V and σ is an isomorphism $\alpha^* \mathcal{A} \xrightarrow{\sim} \pi^* \mathcal{A}$. The isomorphism σ is required to satisfy a cocycle condition whose details we omit, since this condition is not relevant to the discussion at hand (see [Sc, §3.1] for details). Further, we will simply say that \mathcal{A} is a \mathbb{C}^* -equivariant sheaf and omit the isomorphism σ from our notation.

1.2. Let V be a variety endowed with a \mathbb{C}^* -action $\alpha \colon \mathbb{C}^* \times V \to V$. Additionally, assume that the \mathbb{C}^* -action contracts V to some point $x_0 \in V$. That is, the action α extends to a morphism $\mu \colon \mathbb{C} \times V \to V$ such that $\mu(0, x) = x_0$ for all $x \in V$.

Let $\delta: \{x_0\} \hookrightarrow V$ and $a: V \twoheadrightarrow \{x_0\}$ be the inclusion and projection maps respectively.

Lemma. Let \mathcal{A} be a \mathbb{C}^* -equivariant sheaf on V. Assume that $\delta^*\mathcal{A} = 0$ (i.e., the stalk at x_0 is trivial). Then $\mathbb{R}a_*\mathcal{A} = 0$.

Proof. Let $\pi_1: \mathbf{C} \times V \to \mathbf{C}$ and $\pi_2: \mathbf{C} \times V \to V$ be the projection maps. Then we have a cartesian square

$$\begin{array}{c} \mathbf{C} \times V \xrightarrow{\pi_2} V \\ \pi_1 \\ \downarrow \\ \mathbf{C} \xrightarrow{} \{x_0\} \end{array}$$

So, by smooth base change, it suffices to show that $\mathbf{R}\pi_{1*}\pi_2^*\mathcal{A} = 0$. Note that smooth base change already implies that $\mathbf{R}^i\pi_{1*}\pi_2^*\mathcal{A}$ is a constant sheaf on **C** for each *i*.

Define $\tau: \mathbf{C} \times V \to \mathbf{C} \times V$ by $(t, x) \mapsto (t, \mu(t, x))$. Then τ is a morphism over \mathbf{C} , i.e., $\pi_1 \tau = \pi_1$. As \mathcal{A} is \mathbf{C}^* -equivariant, the restriction of $\pi_2^* \mathcal{A}$ to $\mathbf{C}^* \times V$ is isomorphic to $\alpha^* \mathcal{A}$. Now $\alpha^* \mathcal{A}$ is the restriction of $(\pi_2 \tau)^* \mathcal{A} = \tau^* \pi_2^* \mathcal{A}$ to $\mathbf{C}^* \times V$. Thus, the restrictions to $\mathbf{C}^* \times V$ of $\pi_2^* \mathcal{A}$ and $\tau^* \pi_2^* \mathcal{A}$ are isomorphic. The restriction of $\tau^* \pi_2^* \mathcal{A}$ to $\{0\} \times V$ is zero, since the stalk \mathcal{A}_{x_0} is zero. Thus, the sheaf $\tau^* \pi_2^* \mathcal{A}$ is the extension by zero of its restriction to $\mathbf{C}^* \times V$. In formulas: let $j: \mathbf{C}^* \times V \hookrightarrow \mathbf{C} \times V$ be the inclusion map, then

$$\tau^* \pi_2^* \mathcal{A} \simeq j_! j^* \tau^* \pi_2^* \mathcal{A} \simeq j_! j^* \pi_2^* \mathcal{A}.$$

As j is an open inclusion, $j_{!}$ is left adjoint to j^{*} . In particular, we have a canonical map $\varepsilon': j_{!}j^{*} \to id$. Similarly, we have a canonical map $\eta': id \to \mathbf{R}\tau_{*}\tau^{*}$.

Define $\gamma: \mathbf{R}\pi_{1*}\pi_2^*\mathcal{A} \to \mathbf{R}\pi_{1*}\pi_2^*\mathcal{A}$ to be the composition

$$\mathbf{R}\pi_{1*}\pi_{2}^{*}\mathcal{A} \xrightarrow{\mathbb{I}_{\mathbf{R}\pi_{1*}}\eta'\mathbb{I}_{\pi_{2}^{*}}} \mathbf{R}\pi_{1*}\mathbf{R}\tau_{*}\tau^{*}\pi_{2}^{*}\mathcal{A} = \mathbf{R}(\pi_{1}\tau)_{*}\tau^{*}\pi_{2}^{*}\mathcal{A} = \mathbf{R}\pi_{1*}\tau^{*}\pi_{2}^{*}\mathcal{A}$$
$$\xrightarrow{\sim} \mathbf{R}\pi_{1*}j_{!}j^{*}\pi_{2}^{*}\mathcal{A} \xrightarrow{\mathbb{I}_{\mathbf{R}\pi_{1*}}\varepsilon'\mathbb{I}_{\pi_{2}^{*}}} \mathbf{R}\pi_{1*}\pi_{2}^{*}\mathcal{A}.$$

On the stalk at the point 1, of the sheaf $\mathbf{R}^{i}\pi_{1*}\pi_{2}^{*}\mathcal{A}$, the map induced by γ is an isomorphism. On the stalk at the point 0, the map induced by γ is zero. An endomorphism of a constant sheaf over a connected base is constant. Thus, $\mathbf{R}^{i}\pi_{1*}\pi_{2}^{*}\mathcal{A}$ must be zero. Consequently, $\mathbf{R}\pi_{1*}\pi_{2}^{*}\mathcal{A} = 0$.

1.3. The functor δ^* (resp. $\delta_!$) is left adjoint to δ_* (resp. $\delta^!$). In particular, there are canonical maps $\eta: \mathrm{id} \to \delta_* \delta^*$ and $\varepsilon: \delta_! \delta^! \to \mathrm{id}$. Applying $\mathbf{R}a_*$ (resp. $\mathbf{R}a_!$) we obtain maps $\mathbb{1}_{\mathbf{R}a_*}\eta: \mathbf{R}a_* \to \delta^*$ and $\mathbb{1}_{\mathbf{R}a_!}\varepsilon: \delta^! \to \mathbf{R}a_!$.

Proposition. Let \mathcal{A} be a \mathbb{C}^* -equivariant sheaf on V. Then $\mathbb{1}_{\mathbb{R}a_*}\eta \colon \mathbb{R}a_*\mathcal{A} \xrightarrow{\sim} \delta^*\mathcal{A}$ and $\mathbb{1}_{\mathbb{R}a_!}\varepsilon \colon \delta^! \xrightarrow{\sim} \mathbb{R}a_!$ are isomorphisms.

Proof. Let \mathcal{K} be the kernel of the morphism $\eta: \mathcal{A} \to \delta_* \delta^* \mathcal{A}$. Then \mathcal{K} inherits a \mathbb{C}^* -equivariant structure from \mathcal{A} and furthermore $\delta^* \mathcal{K} = 0$. As η is surjective, we have an exact sequence $0 \to \mathcal{K} \to \mathcal{A} \xrightarrow{\eta} \delta_* \delta^* \mathcal{A} \to 0$. This gives a distinguished triangle $\mathcal{K} \to \mathcal{A} \xrightarrow{\eta} \delta_* \delta^* \mathcal{A} \rightsquigarrow$. Applying $\mathbb{R}a_*$ and using the previous Lemma we get a distinguished triangle $0 \to \mathbb{R}a_*\mathcal{A} \xrightarrow{\mathbb{I}_{\mathbb{R}a_*}\eta} \delta^* \mathcal{A} \rightsquigarrow$. Thus, $\mathbb{1}_{\mathbb{R}a_*}\eta: \mathbb{R}a_*\mathcal{A} \xrightarrow{\sim} \delta^* \mathcal{A}$ is an isomorphism.

The second isomorphism is obtained from the first by Verdier duality. \Box

1.4. Let \mathcal{T} be a triangulated category. An object $X \in \mathcal{T}$ is filtered by objects Y_1, \ldots, Y_n if there exists a sequence of objects $0 = X_0, X_1, \ldots, X_n = X$ and distinguished triangles $X_{i-1} \to X_i \to Y_i \rightsquigarrow$.

Example. Let \mathcal{A} be a bounded complex of sheaves. Then, in the derived category of sheaves, \mathcal{A} is filtered by shifts of its cohomology sheaves.

1.5. We can now show:

Theorem ([Sp, §3]). Let \mathcal{A}^{\cdot} be a bounded complex of sheaves whose cohomology sheaves are \mathbb{C}^* -equivariant. Then $\mathbb{1}_{\mathbf{R}a_*}\eta \colon \mathbf{R}a_*\mathcal{A}^{\cdot} \xrightarrow{\sim} \delta^*\mathcal{A}^{\cdot}$ and $\mathbb{1}_{\mathbf{R}a_!}\varepsilon \colon \delta^!\mathcal{A}^{\cdot} \xrightarrow{\sim} \mathbf{R}a_!\mathcal{A}^{\cdot}$ are isomorphisms.

Proof. By assumption, \mathcal{A}^{\cdot} is filtered by objects Y_1, \ldots, Y_n , where each object Y_i is the shift of a \mathbb{C}^* -equivariant sheaf. So, we have a sequence of objects $0 = X_0, X_1, \ldots, X_n = \mathcal{A}^{\cdot}$ and distinguished triangles $X_{i-1} \to X_i \to Y_i \rightsquigarrow$. As $X_1 \simeq Y_1$, the previous Proposition gives that $\mathbb{1}_{\mathbf{R}a_*}\eta \colon \mathbf{R}a_*X_1 \xrightarrow{\sim} \delta^*X_1$. Proceeding by induction, we obtain that for all i, $\mathbb{1}_{\mathbf{R}a_*}\eta \colon \mathbf{R}a_*X_i \xrightarrow{\sim} \delta^*X_i$. In particular, $\mathbb{1}_{\mathbf{R}a_*}\eta \colon \mathbf{R}a_*\mathcal{A}^{\cdot} \xrightarrow{\sim} \delta^*\mathcal{A}^{\cdot}$.

The second isomorphism follows from the first by Verdier duality.

References

- [Sc] J. SCHÜRMANN, Topology of singular spaces and constructible sheaves, Mathematics Institute of the Polish Academy of Sciences, Mathematical Monographs (New Series) 63, Birkhäuser Verlag, Basel (2003).
- [Sp] T. A. SPRINGER, A purity result for fixed point varieties in flag manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), no. 2, 271-282.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WI 53706 *E-mail address*: virk@math.wisc.edu

 $\mathbf{2}$