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Proposition. Let R = R[x, y]/ < x2 + y2 − 1 >.

1. R is a Dedekind domain.

2. If p is a prime (and thus maximal) ideal in R, then R/p is an algebraic extension of R,
and thus isomorphic to either R or C. Both possibilities can occur, in the first case p is
of the form 〈x − α, y − β〉, where α, β ∈ R and α2 + β2 = 1, and in the second case, p

is a principal ideal generated by some linear polynomial y + b, where b ∈ R, |b| > 1, or
x + ay + b, where a, b ∈ R, b2 − a2 > 1. The class group is generated by the classes of the
ideals 〈x− α, y − β〉, where α, β ∈ R and α2 + β2 = 1.

3. If p1 and p2 are prime ideals of the form 〈x−αj , y−βj〉, respectively, where α2
j +β2

j = 1, j =
1, 2, then p1p2 is aprincipal ideal, with generator a linear polynomial vanishing at both
(α1, β1) and )α2, β2), if these points are distinct or else the linear polynomial α1x+β1y−1
if p1 = p2. Thus, all non-principal prime ideals of R define the same element of the class
group, this element is of order 2 and hence the class group is isomorphic to Z/2.

Proof. To show that R is a Dedekind domain it suffices to show that R is a commutative inte-
gral domain such that every non-zero prime ideal is maximal, it is integrally closed in its field
of fractions and it is noetherian.

Note that x2 +y2−1 is irreducible in R[x, y] (a UFD) and hence prime making R an integral
domain.

Also note that R[x, y] may be viewed as the ring of polynomials in one indeterminate (y)
over the ring R[x]. R is simply an algebraic extension of R[x], i.e, R ∼= R[x](

√
1− x2) (the

isomorphism is given by the obvious map).

Now let p be a non-zero prime ideal in R and let f1(x) + f2(x)
√

1− x2 ∈ p. Now (f1(x) −
f2(x)

√
1− x2)(f1(x) + f2(x)

√
1− x2) = f2

1 (x) − f2
2 (x)(1 − x2) ∈ p and thus q = p ∩ R[x] is a

non-zero prime ideal in R[x] and is hence maximal (as R[x] is a PID).
We thus have that R[x]/q is a field. Now note that R/p is a finite dimensional vector space

over R[x]/q (R as a module is finitely generated over R[x] and R[x]/q is isomorphic to the image
of R[x] in R/p). We need to show that R/p is a field. Let z 6= 0 be in R/p. As we are in a finite
dimensional vector space there must be a nontrivial expression of the form

a0 + a1z + a2z
2 + · · ·+ akz

k = 0
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with a0, . . . , ak ∈ R[x]/q and not all ai zero. Let k be minimal then a0 6= 0 as otherwise we
could cancel a factor z (as p is prime, R/p is a domain and we have cancellation in products).
Thus

(a1z + · · ·+ akz
k) = a0

now a0 ∈ R[x]/q which is a field so

a−1
0 z(a1 + · · ·+ akz

k−1) = 1

and z is a unit.

To see that R is integrally closed, first note that R[x] by virtue of being a UFD is integrally
closed. Now let F be the field of fractions for R[x]. Now let α =

√
1− x2 and note that

R = R[x](α) and the field of fractions of R is F (α) = F + Fα i.e every element of ζ ∈ F (α) can
be written as ζ = m + nα with m,n ∈ F . Now if ζ is integral over R then by ‘transitivity of
integrality’ then ζ is integral over R[x]. The minimal polynomial of ζ over F is X2 − 2mX +
(m2 − n2(1 − x2)). As the ζ is integral over R[x] and the minimal polynomial is unique we
have 2m ∈ R[x] and hence m ∈ R[x], furthermore m2 − n2(1 − x2) ∈ R[x] which gives us that
n2(1− x2) ∈ R[x]. Now as R[x] is a UFD if some prime p of R[x] divides the denominator of n
then p2|1− x2 but 1− x2 is square free and hence n ∈ R[x] which gives us that ζ ∈ F (α) = R.

Furthermore, it is quite clear that R is noetherian, hence we have shown that R is a Dedekind
domain.

We will now characterize all prime (and hence maximal) ideals of R. First of all note that
if f ∈ R then f can be represented as p1(x) + p2(x)y and as g1(y) + g2(y)x where p1, p2, g1, g2

are polynomials over the reals. Now let p be a proper prime ideal of R and assume that it
has two minimal generators, i.e p = 〈f(x, y), g(x, y)〉. From our earlier observation f(x, y) =
f1(x) + f2(x)y and note that (f1(x) − f2(x)y)f(x, y) can be represented as an element of R[x]
and as this element is in p we can obtain an irreducible (over R[x]) polynomial in the ideal. As
this polynomial is irreducible over the reals we have

Case 1 The irreducible polynomial obtained is of the form x−α. Now g(x, y) = g1(x)+g2(x)y
and we can divide g1 and g2 by x−α to get a polynomial h(x, y) = y−β such that 〈x−α, y−β〉 =
p. Also note that using the relation x2 + y2 = 1 we get that α2 + β2 = 1 as otherwise p would
be the whole ring.

Case 2 The irreducible polynomial obtained is of the form x2 + ax+ b, we can obtain another
irreducible polynomial using the other representation of f in terms of y, if this polynomial is
linear then we are back in the situation of case, otherwise we have a quadratic in y which can be
added with the quadratic in x to obtain a polynomial of the form x+ay+b (or y+sx+t, without
loss of generality we may assume that it is of the former form), modding out this polynomial
from g to obtain another distinct polynomial of the form x+a1y + b1 (it must be distinct as our
ideal is 2-generated). Using these two polynomials we obtain y − β ∈ p and we are back in the
situation of case 1.

Now assume p is principal, then using the same arguments as before we can obtain an
irreducible polynomial over the reals, if this is linear then we have a generator of the form y−β
(or symmetrically x − α), without loss of generality we may assume it is the former (as we
will cover the other form when we deal with the quadratic case next), now clearly |β| > 1 as
otherwise as case 1 of the 2-generated case has shown we wont have a maximal ideal.
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Now if our irreducible was a quadratic then using the arguments of case 2 from the 2-
generated case we obtain a polynomial of the form x + ay + b. Now b2 − a2 > 1 as otherwise
using the relation x2 + y2 = 1 we get that

x + ay + b = (a2 + 1)y2 + 2aby + b2 − 1 = (a2 + 1)(y − ζ)(y − ζ)

where ζ = −2ab+2
√

a2−b2+1
2(a2+1)

and ζ is it’s galois conjugate, which contradicts the fact that we had
an irreducible.

Also, the statement about R/p as an algebraic extension of R follows easily from our char-
acterizations of p.

Finally, let p1 = 〈x− α1, y − β1〉 and p2 = 〈x− α2, y − β2〉, thus p1p2 = 〈f, g, h, p〉 where

f = x2 − (α1 + α2)x + α1α2

g = xy − β2x− α1y + α1β2

h = xy − β1x− α2y + α2β1

p = y2 − (β1 + β2)y + β1β2

Observe that every element of p1p2 vanishes at (α1, β1) and (α2, β2). If p1 6= p2 it follows that
if we have any two linear polynomials (i.e of the form ax + by + c) in p1p2 then they must be
scalar multiples of each other (as otherwise we could ”solve” the system of equations and obtain
a polynomial which does not vanish at both points). Note that f + p and g − h are linear, thus
if we can show that 〈f + p〉 contains f and g then 〈f + p〉 = p1p2. Now if α1 + α2 6= 0 then
(f + p)(−ax− by − c) = f and (f + p)(rx + sy + t) = g, where

a =
α1 + α2

2(1 + α1α2 + β1β2)

b =
β1 + β2

−2(1 + α1α2 + β1β2)

c =
−1
2

r =
β1 + β2

2(1 + α1α2 + β1β2)

s =
β1 − β2

2(α1 + α2)

t =
1 + α2

1 − β2
2 + 2α1α2

2(α1 + α2)(1 + α1α2 + β1β2)

(Note that the condition α1 + α2 6= 0 is enought as 1 + α1α2 + β1β2 = (α1 + α2)2 + (β1 + β2)2)
If p1 = p2 then the same argument still works as g−h = 0. Thus, the only case we are left with
is when α1 + α2 = 0 and hence β1 = ±β2.

Case 1 β1 = β2, then

f = x2 − α2
1

g = xy − β1x− α1y + α1β1

h = xy − β1x + α1y − α1β1

p = y2 − 2β1y + β2
1

f + p = −2β1(y − β1)
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g − h is still linear, and clearly if β1 6= 0 then y − β1 ∈ p1p2, moreover (y − β1)(−y − β1) = f
and clearly p ∈ 〈y − β1〉, thus p1p2 = 〈y − β1〉. If β1 = 0 then α2

1 = 1 and it follows easily that
p1p2 = 〈y〉.

Case 2 β1 = −β2, then

f = x2 − α2
1

g = xy + β1x− α1y − α1β1

h = xy − β1x + α1y − α1β1

p = −f

f + p = 0
g − h = 2(β1x− α1y)

−1
2 (α1x−β1y)(g−h) = xy−α1β1, thus g, h ∈ 〈g−h〉, furthemore 1

2(β1x + α1y)(g−h) = f and
hence p1p2 = 〈g − h〉.

It now follows clearly that the class group of R is Z/2.
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