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Proposition. Let R = R[z,y]/ < 22 + 3% — 1 >.
1. R s a Dedekind domain.

2. If p is a prime (and thus mazimal) ideal in R, then R/p is an algebraic extension of R,
and thus isomorphic to either R or C. Both possibilities can occur, in the first case p is
of the form (x — o,y — (), where o, 3 € R and o® + 32 = 1, and in the second case, p
is a principal ideal generated by some linear polynomial y + b, where b € R, |b| > 1, or
x +ay + b, where a,b € R, b> —a®? > 1. The class group is generated by the classes of the
ideals (x — o,y — 3), where a, 3 € R and o® + 3% = 1.

3. Ifp1 and po are prime ideals of the form (x—ov, y—B3;), respectively, where oz?Jrﬂ]Z =1,5=
1,2, then pipo is aprincipal ideal, with generator a linear polynomial vanishing at both
(a1, 1) and )ag, B2), if these points are distinct or else the linear polynomial aqx+ 1y —1
if p1 = po. Thus, all non-principal prime ideals of R define the same element of the class
group, this element is of order 2 and hence the class group is isomorphic to 7Z./2.

Proof. To show that R is a Dedekind domain it suffices to show that R is a commutative inte-
gral domain such that every non-zero prime ideal is maximal, it is integrally closed in its field
of fractions and it is noetherian.

Note that 22 +y? — 1 is irreducible in R[z, y] (a UFD) and hence prime making R an integral
domain.

Also note that Rz, y] may be viewed as the ring of polynomials in one indeterminate (y)
over the ring R[z]. R is simply an algebraic extension of R[z], i.e, R = Rz](v/1 — z2) (the
isomorphism is given by the obvious map).

Now let p be a non-zero prime ideal in R and let fi(z) + fo(z)vV1 — 22 € p. Now (f1(z) —
@WT=22)(fi(2) + foe)WT—22) = fA(z) — f2(@)(1 —2?) € p and thus g = p 1 R[z] is
non-zero prime ideal in R[z] and is hence maximal (as R[z] is a PID).

We thus have that R[z]/q is a field. Now note that R/p is a finite dimensional vector space
over R[z]|/q (R as a module is finitely generated over R[z] and R[z]/q is isomorphic to the image
of R[z] in R/p). We need to show that R/p is a field. Let z # 0 be in R/p. As we are in a finite

dimensional vector space there must be a nontrivial expression of the form

ap + arz + agz® + -+ a2 =0



with ag,...,ar € Rlz]/q and not all a; zero. Let k be minimal then ag # 0 as otherwise we
could cancel a factor z (as p is prime, R/p is a domain and we have cancellation in products).
Thus

(a1z+ -+ apz®) = ag

now ag € Rlz]|/q which is a field so
agtz(ar 4+ a2l =1
and z is a unit.

To see that R is integrally closed, first note that R[z] by virtue of being a UFD is integrally
closed. Now let F be the field of fractions for R[z]. Now let « = +/1 —z? and note that
R = R[z](«) and the field of fractions of R is F(o) = F + Fa i.e every element of ¢ € F(a) can
be written as ( = m + na with m,n € F. Now if { is integral over R then by ‘transitivity of
integrality’ then ( is integral over R[z]. The minimal polynomial of ¢ over F is X2 — 2mX +
(m? — n%(1 — 2?)). As the ( is integral over R[x] and the minimal polynomial is unique we
have 2m € R[z] and hence m € R[], furthermore m? — n?(1 — x2) € R[z] which gives us that
n?(1 — 2?) € R[z]. Now as R[z] is a UFD if some prime p of R[z] divides the denominator of n
then p?|1 — 22 but 1 — 22 is square free and hence n € R[z] which gives us that ¢ € F(a) = R.

Furthermore, it is quite clear that R is noetherian, hence we have shown that R is a Dedekind
domain.

We will now characterize all prime (and hence maximal) ideals of R. First of all note that
if f € R then f can be represented as p1(x) + p2(z)y and as g1(y) + g2(y)x where p1, p2, g1, g2
are polynomials over the reals. Now let p be a proper prime ideal of R and assume that it
has two minimal generators, i.e p = (f(z,y),g(z,y)). From our earlier observation f(z,y) =
fi(z) + fao(x)y and note that (fi(xz) — fa(x)y)f(z,y) can be represented as an element of R[z]
and as this element is in p we can obtain an irreducible (over R[z]) polynomial in the ideal. As
this polynomial is irreducible over the reals we have

Case 1 The irreducible polynomial obtained is of the form x —«a. Now g(z,y) = g1(z)+g2(2)y
and we can divide g1 and g2 by £ —a to get a polynomial h(z,y) = y— [ such that (z—a,y— ) =
p. Also note that using the relation 2 + y? = 1 we get that o? + 3% = 1 as otherwise p would
be the whole ring.

Case 2 The irreducible polynomial obtained is of the form 2 + ax + b, we can obtain another
irreducible polynomial using the other representation of f in terms of y, if this polynomial is
linear then we are back in the situation of case, otherwise we have a quadratic in y which can be
added with the quadratic in z to obtain a polynomial of the form x+ay+b (or y+ sx+t, without
loss of generality we may assume that it is of the former form), modding out this polynomial
from g to obtain another distinct polynomial of the form = + a1y + by (it must be distinct as our
ideal is 2-generated). Using these two polynomials we obtain y — 3 € p and we are back in the
situation of case 1.

Now assume p is principal, then using the same arguments as before we can obtain an
irreducible polynomial over the reals, if this is linear then we have a generator of the form y — 8
(or symmetrically x — «), without loss of generality we may assume it is the former (as we
will cover the other form when we deal with the quadratic case next), now clearly |3| > 1 as
otherwise as case 1 of the 2-generated case has shown we wont have a maximal ideal.



Now if our irreducible was a quadratic then using the arguments of case 2 from the 2-
generated case we obtain a polynomial of the form x + ay 4+ b. Now b> — a? > 1 as otherwise
using the relation 22 + y? = 1 we get that

cHay+b=(a®+1)y* +2aby +b* —1=(a®>+1)(y — Oy — )

—2ab+2va?—-b%+1

(a+1) and ( is it’s galois conjugate, which contradicts the fact that we had

where ( =
an irreducible.
Also, the statement about R/p as an algebraic extension of R follows easily from our char-

acterizations of p.

Finally, let p1 = (z — a1,y — (1) and p2 = (x — a2,y — (2), thus p1p, = (f, 9, h,p) where

f = 22— (a1 + ag)x + ajag
g = xy— Por — a1y + aif
h = xy—0Bir —agy + a2
p = v = (Bi+ By + Bif

Observe that every element of p;po vanishes at («q, 51) and (ag, B2). If p; # po it follows that
if we have any two linear polynomials (i.e of the form az + by + ¢) in pyp2 then they must be
scalar multiples of each other (as otherwise we could ”solve” the system of equations and obtain
a polynomial which does not vanish at both points). Note that f + p and g — h are linear, thus
if we can show that (f 4+ p) contains f and g then (f + p) = p1p2. Now if ay + ag # 0 then
(f +p)(—az —by — c) = f and (f + p)(rz + sy + t) = g, where

0 = a1+ oo
2(1 + arag + f152)

p B+ B2
—2(14 ajag + B1/2)
-1
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- B1 + B2
2(1 + arag + f132)

s — B — B2
2(a1 + a2)

;= 1+Oz%—ﬂ§+2a1ag

2(a1 + a2)(1 + arag + B182)

(Note that the condition a; + ag # 0 is enought as 1+ ajas + 3162 = (a1 + a2)? + (B1 + 32)?)
If p; = po then the same argument still works as g — h = 0. Thus, the only case we are left with
is when aq + oo = 0 and hence §1 = £0s.

Case 1 (31 = (32, then

= x2—a%

= xy— i — a1y +aifh
ry — frr + a1y — a1
= ¥’ — 26+ 6

= =261y — f)
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g — h is still linear, and clearly if 51 # 0 then y — 31 € p1p2, moreover (y — G1)(—y — B1) = f
and clearly p € (y — 31), thus p1p2 = (y — B1). If 1 = 0 then a? = 1 and it follows easily that

p1p2 = ().

Case 2 3y = —[32, then

fo=a*—a
g = xy+fix—ay—aif
h = zy—bBir+ay— a1
p = —f

f+p = 0

g—h = 2(Biz —a1y)

_71(0413: —01y)(g — h) = xy — a1 54, thus g, h € (g — h), furthemore %(ﬂlx +a1y)(g—h) = f and

hence p1p2 = (g — h).

It now follows clearly that the class group of R is Z/2.



