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Throughout we will be working in Z. Consider the equation

ax2 + bx + c ≡ 0 mod p (1)

where p is an odd prime and a 6≡ 0 mod p. So we have that gcd(a, p) = 1 and as p is odd,
gcd(4a, p) = 1. Thus, (1) is equivalent to 4a(ax2 + bx + c) ≡ 0 mod p which gives us that
(2ax + b)2 − (b2 − 4ac) ≡ 0 mod p. Putting y = 2ax + b and d = b2 − 4ac we obtain

y2 ≡ d mod p. (2)

So finding a solution for (1) has been reduced to finding a solution for

x2 ≡ a mod p. (3)

To avoid trivialities we assume that p does not divide a. Suppose x0 is a solution to (3) then
x = p − x0 is also a solution to (3), furthermore p − x0 6≡ x0 as otherwise we would have that
p|x0 and so p|a. If x2 ≡ a mod p admits a solution we call a a quadratic residue of p and a
quadratic non residue otherwise.

Lemma (Euler’s criterion). Let p be an odd prime and suppose gcd(a, p) = 1, then a is a
quadratic residue of p if and only if a

p−1
2 ≡ 1 mod p.

Proof. Suppose a is a quadratic residue of p then, x2 ≡ a mod p which implies that

a
p−1
2 ≡ xp−1 ≡ 1 mod p.

Conversely, let r be a primitive root of p (we know one always exists for p > 2), we then have
that a ≡ rk mod p, for some k ∈ Z>0. So

r
k(p−1)

2 ≡ a
p−1
2 ≡ 1 mod p,

however, the order of r is p − 1, so p − 1 divides k(p−1)
2 . Thus k is even and a is a quadratic

residue.

Define the Legendre symbol as,

(a|p) =
{

1 if a is a quadratic residue of p
−1 if a is not a quadratic residue of p

Observe that Euler’s criterion restated in terms of Legendre’s symbol is just that

(a|p) ≡ a
p−1
2 mod p
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Lemma. Let p be an odd prime, then
∑p−1

a=1(a|p) = 0.

Proof. Let r be a primitive root of p, then r
p−1
2 ≡ −1 mod p, also, rk ≡ a mod p for a

unique k if 1 ≤ a ≤ p − 1. So (a|p) = (rk)
p−1
2 ≡ (−1)k mod p. It now follows clearly that∑p−1

a=1(a|p) = 0.

Lemma (Gauss’ lemma). Let p be an odd prime and suppose that gcd(a, p) = 1. If n denotes
the number of integers in the set S = {a, 2a, 3a, . . . , p−1

2 a} whose remainders upon division by p
exceed p

2 , then (a|p) = (−1)n.

Proof. As gcd(a, p) = 1 none of the members of S is congruent to 0 and no two are congruent to
each other modulo p. Let r1, . . . , rm be the remainders upon division by p such that 0 < ri < p

2

and let s1, . . . , sn be those remainders such that p
2 < si < p. Then we have that m + n = p−1

2
and the integers r1, . . . , rm, p − s1, . . . , p − sn are all positive and less than p

2 . We prove that
they are all distinct. Suppose that p − si = rj , so there exists u, v ∈ S such that si = ua and
rj = va, this means that si + rj ≡ 0 ≡ (u + v)a mod p, which gives us that u + v ≡ 0 mod p,
but 1 < u+ v ≤ p−1, so this is a contradiction. It now follows that r1, . . . , rm, p− s1, . . . , p− sn

are all distinct. We thus have that(
p − 1

2

)
! ≡ r1 · · · rm(p − s1) · · · (p − sn)

≡ r1 · · · rm(−s1) · · · (−sn)

≡ (−1)na
p−1
2

(
p − 1

2

)
! mod p.

So 1 ≡ (−1)na
p−1
2 mod p and consequently a

p−1
2 ≡ (a|p) ≡ (−1)n mod p, and the result now

follows.

Lemma. Let p be an odd prime and a an odd integer such that gcd(a, p) = 1, then

(a|p) = (−1)
P p−1

2
k=1 b

ka
p
c
.

Proof. Let S be the set as in Gauss’ lemma. Divide each element by p to get ka = qkp + tk and
so k a

p = qk + tk
p , this gives us that bka

p c = qk and thus ka = bka
p cp + tk. If tk < p

2 then it is one
of the r1, . . . , rm, if tk > p

2 then its one of the s1, . . . , sn. So

p−1
2∑

k=1

ka =

p−1
2∑

k=1

bka

p
cp +

m∑
k=1

rk +
n∑

k=1

sk,

but we also have that
p−1
2∑

k=1

k =
m∑

k=1

rk +
n∑

k=1

(p − sk) =
m∑

k=1

rk + np −
n∑

k=1

sk.

Combining the last two equations we obtain that

(a − 1)

p−1
2∑

k=1

k =

p−1
2∑

k=1

bka

p
cp + 2

n∑
k=1

sk − np.

So we have that n ≡
∑ p−1

2
k=1b

ka
p c mod 2. Now Gauss’ lemma translates to the required result.
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Proposition (The Law of Quadratic Reciprocity). If p and q are distinct odd primes then

(p|q)(q|p) = (−1)
p−1
2

q−1
2 .

Proof. Consider the rectangle in R2 whose vertices are at (0, 0), (p
2 , 0), (0, q

2), (p
2 , q

2). Clearly the
number of lattice points in this rectangle R is p−1

2
q−1
2 .

Observe that the diagonal D from (0, 0) to (p
2 , q

2) has equation y = q
px or equivalently py = qx.

Now as gcd(p, q) = 1 no lattice point in R lies on D. Let T1 be the region of R below D and T2

be the region above. Now the number of lattice points in T1 above the point (k, 0) are bkq
p c, so

the total number of points in T1 is
∑ p−1

2
k=1b

kq
p c. Similarly in T2 the total number of lattice points

is
∑ q−1

2
j=1b

jp
q c, hence we must have that

p − 1
2

q − 1
2

=

p−1
2∑

k=1

bkq

p
c +

q−1
2∑

j=1

bjp

q
c.

The result now follows from the previous lemma.
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