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1. Notation

Given an algebra A, denote by A−mod the category of A-modules. Denote by RepA
the category of finite dimensional A-modules.

Throughout, ‘functorial’, ‘natural’ and ‘canonical’ will mean a morphism of functors
(with the functors in question being obvious from the context). For general categorical
notions the reader is referred to [KaSc].

2. Reminders

2.1. Adjunctions. Let C and D be two categories. Let (F ∗, F ) be an adjoint pair of
functors, F : C → D and F ∗ : D → C. These are the data of two natural transformations

εF : F ∗F → idC,

ηF : idD → FF ∗,

called the counit and unit respectively, such that the compositions

F
ηF ◦1F

// FF ∗F
1F ◦εF

// F

and

F ∗ 1F∗◦ηF
// F ∗FF ∗ εF ◦1F∗

// F ∗

are equal to the identity maps 1F : F → F and 1F ∗ : F ∗ → F ∗, respectively. Then there
is an isomorphism functorial in X ∈ C and Y ∈ D

αX,Y : HomC(F
∗Y,X)

∼−→HomD(Y, F (X)),

f 7→ F (f) ◦ ηF (Y ).

The reader may verify that the inverse is given by f ′ 7→ εF (F ∗F (X)) ◦ F ∗(f ′). Note
that the data of such a functorial isomorphism provides a structure of an adjoint pair.
Namely, set εF (F ∗F (X)) = α−1

X,F (X)(idF (X)) and ηF (Y ) = αF ∗(Y ),Y (idF ∗(Y )).

Given an adjoint pair (F ∗, F ), F ∗ is said to be left adjoint to F and F is said to be
right adjoint to F ∗.

3. Abstract nonsense

In this section we will define precisely the type of categories we will be working with.
This avoids all possible confusion as to ‘how strict’ our monoidal structures are, and also
makes this text essentially self contained. None of the results in this section are new.
The exposition mainly follow the monographs [Ka] and [Tu] (also see [CP]).

Despite the appearance of the word ‘category’, the theory will have the flavor not of
abstract category theory, but rather of linear algebra, due to the strong conditions we
will soon impose on our categories.

We begin by drawing a diagram summarizing the relationships between the various
types of monoidal categories that will appear in this text. In this diagram, an arrow from
type A to type B means that the definition of type B is obtained from the definition
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of type A either by putting an additional structure on the category or by imposing an
additional requirement. (

monoidal
category

)
ww ''(

braided monoidal
category

)

''

(
rigid monoidal

category

)
��(

pivotal rigid
category

)
��(

ribbon
category

)
3.1. Monoidal categories. A strict monoidal category is a 3-tuple C = (C,⊗,1) con-
sisting of a category C, a bifunctor ⊗ : C × C → C, a distinguished object 1 ∈ C (called
the unit object). These data being subject to the following conditions:

(i) For all V ∈ C we have

1⊗ V = V and V ⊗ 1 = V.

(ii) Suppose X1 and X2 are two expressions obtained from V1 ⊗ V2 ⊗ · · · ⊗ Vm by
inserting 1’s and parentheses: an example of such an expression is

(V1 ⊗ 1)⊗ ((V2 ⊗ V3)⊗ · · · ⊗ Vm).

Then X1 = X2.

We pause to make an important technical remark. Almost all the examples of monoidal
categories that arise ‘in nature’ are non-strict (for example, vector spaces). That is, all the
equalities in the defining axioms are replaced by functorial isomorphisms. Fortunately, it
is known that every monoidal category is equivalent to a strict one [MacL, Ch. XI §3, Thm.
1]. This result will constantly be invoked to omit parentheses and the associativity and
unit isomorphisms in our formulas even when dealing with non-strict monoidal categories.
Keeping track of these isomorphisms would only make the proofs of our results much more
complicated than the ones given here and obscure the basic ideas behind the theory.

3.2. Braiding. A braiding or R-matrix in a strict monoidal category C is a collection
of isomorphisms

RVW : V ⊗W
∼−→W ⊗ A,

for all V,W ∈ C, satisfying the conditions:

(i) For every f : V → V ′ and g : W → W ′ in C, the diagram

V ⊗W

RV W

��

f⊗g
// V ′ ⊗W ′

RV ′W ′
��

W ⊗ V
g⊗f

// W ′ ⊗ V ′

(3.1)

commutes.
(ii) For every V ∈ C, RV 1 = id = R1V . In particular, R11 = id.
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(iii) The following two diagrams commute for all U, V,W ∈ C

U ⊗ V ⊗W
id⊗RV W

vv

R(U⊗V )W

((

U ⊗W ⊗ V
RUW⊗id

// W ⊗ U ⊗ V

(3.2)

and

U ⊗ V ⊗W
RUV ⊗id

vv

RU(V ⊗W )

((

V ⊗ U ⊗W
id⊗RUW

// V ⊗W ⊗ U

(3.3)

This gives the ‘hexagon property’, i.e. the diagram

V ⊗ U ⊗W
id⊗RUW

**

U ⊗ V ⊗W

RUV ⊗id
44

id⊗RV W

��

RU(V ⊗W )
// V ⊗W ⊗ U

RV W⊗id
��

U ⊗W ⊗ V

RUW⊗id **

RU(W⊗V )
// W ⊗ V ⊗ U

W ⊗ U ⊗ V
id⊗RUV

44

(3.4)

commutes for all U, V,W ∈ C. The top and bottom triangles commute by (3.2) and (3.3)
and the middle rectangle commutes by (3.1). NOT PHRASED QUITE RIGHT,
BESIDES SHOW THIS

3.3. Duals. Let C be a strict monoidal category and let V ∈ C. A left dual to V is an
object V ∗ with two morphisms

εV : V ∗ ⊗ V → 1 and ηV : 1→ V ⊗ V ∗, (3.5)

such that the compositions

V = 1⊗ V
ηV ⊗id

// V ⊗ V ∗ ⊗ V
id⊗εV

// V ⊗ 1 = V (3.6)

and

V ∗ = V ∗ ⊗ 1
id⊗ηV

// V ∗ ⊗ V ⊗ V ∗ εV ⊗id
// 1⊗ V ∗ = V ∗ (3.7)

are equal to the identity.
Similarly, define a right dual of an object V to be an object V ~ with morphisms

ε′V : V ⊗ V ~ → 1 and η′V : 1→ V ~ ⊗ V, (3.8)

satisfying the obvious analogues of the identities in the previous definition.
The terminology used here is taken from [Ka, Ch. XIV]. In [Tu], only V ∗ is considered,

and is simply called the dual of V . Our choice of ‘left/right’ is justified by the following:

Lemma 3.1. Let V ∈ C and suppose V has a left dual V ∗. Then the functor V ⊗− has
a left adjoint given by V ∗ ⊗ −. Similarly if V ~ is a right dual then V ⊗ − has a right
adjoint given by V ~ ⊗−.
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Proof. To ψ ∈ HomC(V
∗ ⊗ X, Y ) associate the map in HomC(X,V ⊗ Y ) given by the

composition

X = 1⊗X
ηV ⊗id

// V ⊗ V ∗ ⊗X
id⊗ψ

// V ⊗ Y.

Similarly, to ψ′ ∈ HomC(X,V ⊗ Y ) associate the map in HomCq(V
∗⊗X, Y ) given by the

composition

V ∗ ⊗X
id⊗ψ′

// V ∗ ⊗ V ⊗ Y
εV ⊗id

// 1⊗ Y = Y.

The above two maps are inverse to each other. It is now clear that this gives an adjunction
HomCq(V

∗⊗−,−)
∼−→HomCq(−, V ⊗−). The proof that V ~⊗− is right adjoint to V ⊗−

is similar. �

Corollary 3.2. Let V ∈ C and suppose V has a left and right dual. Then the functor
V ⊗− is exact.

Proof. By the Lemma, V ⊗− admits left and right adjoints, thus it is exact (see [GeMa,
Ch. II §6.20]). �

3.4. Rigid categories. A strict monoidal category C is called rigid if every object in C
has left and right duals.

Let C be rigid, for V ∈ C turn the assignment V 7→ V ∗ into a contravariant functor as
follows. Given a morphism f : V → W , define f ∗ : W ∗ → V ∗ to be the composition

W ∗ = W ∗ ⊗ 1
id⊗ηV

// W ∗ ⊗ V ⊗ V ∗ id⊗f⊗id
// W ∗ ⊗W ⊗ V ∗ εW⊗id

// 1⊗ V ∗ = V ∗

(3.9)

Lemma 3.3. Let C be rigid and let V,W ∈ C. Then there is a functorial isomorphism

(V ⊗W )∗ ' W ∗ ⊗ V ∗.

Proof. The isomorphism is given by the composition

(V ⊗W )∗ = (V ⊗W )∗ ⊗ 1
id⊗ηV

// (V ⊗W )∗ ⊗ V ⊗ V ∗

id⊗id⊗ηW⊗id
// (V ⊗W )∗ ⊗ V ⊗W ⊗W ∗ ⊗ V ∗

εV ⊗W⊗id⊗id
// 1⊗W ∗ ⊗ V ∗ = W ∗ ⊗ V ∗.

�

Remark 3.4. For an abelian category C, it’s Grothendieck group K0(C) is the quotient
of the free abelian group with generators [V ], V ∈ C, by the subgroup generated by
elements [V ′] − [V ] + [V ′′] for every short exact sequence 0 → V ′ → V → V ′′ → 0 in C.
The elements [L], as L runs through isomorphism classes of irreducible objects in C, form
a basis for K0(C). Additionally, if objects in C have finite length and unique composition
factors, write [M : L] for the coefficient of [L] when [M ] is expressed in terms of this
basis. When the category C is rigid strictly monoidal we can make K0(C) a ring, the
Grothendieck ring of C, by defining [V ][W ] = [V ⊗W ]. Note that we need the exactness
of ⊗ (provided by Corollary 3.2) in order for this to be well defined.

Clearly, K0(C) is an associative ring with unit; if in addition C is braided, then K0(C)
is commutative.

We also record the following:
4



Lemma 3.5. Let C be rigid. If ϕ = {ϕV : V
∼−→V |V ∈ C} is an automorphism of the

identity functor such that ϕV⊗W = ϕV ⊗ ϕW , for all V,W ∈ C, then

ϕ1 = id and ϕV ∗ = (ϕ∗V )−1, V ∈ C,
where ϕ∗V is defined by (3.9).

Proof. �

3.5. Pivotal categories. A rigid category C is called pivotal if for every V ∈ C there
exist functorial isomorphisms

δV : V
∼−→V ∗∗, (3.10)

such that
δV⊗W = δV ⊗ δW , (3.11)

for all V,W ∈ C.

Remark 3.6. As the reader may verify, a pivotal structure on C is equivalent to the
existence of a functorial isomorphism between left and right duals.

Lemma 3.7. Let C be pivotal. Then

δ1 = id, and δV ∗ = (δ∗V )−1, V ∈ C,
where δ∗V is defined by (3.9).

Proof. �

3.6. Ribbon categories. A ribbon category C is a braided pivotal category equipped
with an automorphism θ = {θV : V

∼−→V |V ∈ C} of the identity functor, satisfying the
following two conditions:

θV⊗W ◦ (θV ⊗ θW )−1 = RWV ◦ RVW , for all V,W ∈ C, (3.12)

θV ∗ = θ∗V , for all V ∈ C. (3.13)

The automorphism θ has various incarnations in the literature: the Casimir, ribbon
element, universal twist, balancing etc. We will always refer to it as the Casimir.

Remark 3.8. It can be shown that a braided rigid category is automatically pivotal.
Namely, let ψV : V

∼−→V ∗∗ be given by the composition

V = V ⊗ 1
id⊗ηV ∗

// V ⊗ V ∗ ⊗ V ∗∗ RV V ∗⊗id
// V ∗ ⊗ V ⊗ V ∗∗ εV ⊗id

// 1⊗ V ∗∗ = V ∗∗.

Then ψV ◦ θV defines a pivotal structure on C.

3.7. Example: representations of Uq(sl2). Let U ′
q(sl2) be the Q(q) algebra generated

by E,F,K±1 and relations:

KK−1 = 1K−1K, KE = q2EK, KF = q−2FK,

EF − FE =
K −K−1

q − q−1
.

Uq is a Hopf algebra with coproduct ∆, antipode S and counit ε given by

∆(E) = E ⊗ 1 +K ⊗ E, ∆(F ) = F ⊗K−1 + 1⊗ F, ∆(K) = K ⊗K.

S(E) = −K−1E, S(F ) = −FK, S(K) = K−1.

ε(E) = 0, ε(F ) = 0, ε(K) = 1.

The inverse of the antipode is given by

S−1(E) = −EK−1, S−1(F ) = −KF, S−1(K) = K−1.
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Let M,N ∈ Uq−mod and let M ⊗ N be the usual tensor product of vector spaces.
Endow this space with a Uq-action via the algebra homomorphism ∆ : Uq → Uq ⊗ Uq.

Also endow the field C with a Uq-action via ε : Uq → C and denote the resulting
module by 1. This gives Uq−mod the structure of a strict monoidal category.

Let V ∈ RepUq. Let V ∗ = HomC(V,C) with Uq-action given by

x · f = 〈f, S(x)−〉, x ∈ Uq, f ∈ V ∈ HomC(V,C).

That this is a honest Uq-action is a consequence of the antipode being an algebra anti-
homomorphism. Define linear maps

εV : V ∗ ⊗ V → 1,
f ⊗ v 7→ 〈f, v〉, and

ηV : 1 → V ⊗ V ∗,
1 7→

∑
i vi ⊗ vi,

where {vi} and {vi} are dual bases in V and HomC(V,C). The element
∑

i vi ⊗ vi is
independent of the chosen basis. Indeed, if {ei} and {ei} is another pair of dual bases,
then ∑

i

ei ⊗ ei =
∑
i,j

ei ⊗ 〈ei, vj〉vj =
∑
i,j

〈ei, vj〉ei ⊗ vj =
∑
j

vj ⊗ vj.

Remark 3.9. Although the above computation is trivial, that this element in V ⊗ V ∗ is
independent of the basis may appear mysterious to the reader encountering it for the first
time. Perhaps the following description will further elucidate this: identify the vector
space V ⊗ V ∗ with EndC(V ) via v ⊗ f 7→ 〈f,−〉v. As V is finite dimensional this is an
isomorphism of vector spaces. The element

∑
i vi ⊗ vi is now merely the image of idV

under the inverse map, which is of course independent of any chosen basis.

The reader may verify that εV and ηV are in fact Uq-module homomorphisms. This
is a formal consequence of the axioms of a Hopf algebra, but in our case may also be
verified directly from definitions. Furthermore, it is clear that this data satisfies all the
requirements for a left dual.

Define V ~ to be the vector space HomC(V,C) with Uq action given by

x · f = 〈f, S−1(x)−〉, x ∈ Uq, f ∈ HomC(V,C).

Define maps
??

where as before {vi} and {vi} are dual bases in V and HomC(V,C) respectively. That
this data satisfies the requirements for a right dual follows from arguments similar to
those for V ∗.

Thus, RepUq is rigid.
Now a simple computation using the defining relations shows that

K−2S−1(x) = S(x)K−2, for all x ∈ Uq.
Consequently, the map

δV : V → V ∗∗ given by v 7→ 〈−, K−2v〉
is a Uq-module homomorphism. That it is an isomorphism is immediate from the finite
dimensionality of V . Furthermore as ∆(K) = K ⊗K, we have that, for another module
W in RepUq, δ(V ⊗W ) = δV ⊗ δW modulo the identification in ???.

Thus, RepUq is in fact pivotal. Furthermore, the quantum trace of an endomorphism
f of V is given by

trq(f) = tr(K−2f)id1,

where tr is the ordinary trace of f .
6



References

[APW91] H. H. Andersen, P. Polo, W. Kexin, Representations of quantum algebras, Invent. Math.
104 (1991) 1-59.

[Bau98] P. Baumann, On the center of the quantized enveloping algebras, J. Algebra 203 no, 1 (1998),
244-260.

[Ber90] J. Bernstein, Trace in categories, in Proceedings of the Dixmier Colloquium, Progress in
Mathematics 92, Birkhauser, Boston (1990).
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