THE FORMALISM OF MIXED HODGE MODULES

R. VIRK

1. Preliminaries

In what follows 'variety' = 'scheme' = 'separated scheme of finite type over \mathbf{C} '. A point will always mean a closed point. By sheaf we mean a constructible sheaf of \mathbf{C} -vector spaces (in the analytic topology).

The terms 'functorial', 'natural' and 'canonical' will be used as synonyms for 'a morphism of functors'. For a functor F, we write $\mathbb{1}_F$ for the identity endomorphism of F.

2. Formalism of mixed Hodge modules

2.1. According to [Sa90a, §4.2], for each variety X there is an abelian category MHM(X), the category of *mixed Hodge modules*. Each $M \in MHM(X)$ has a finite filtration W_iM , called the *weight filtration*, which is strictly compatible with any morphism in MHM(X), i.e., the functors $M \mapsto W_iM$ and $M \mapsto Gr_iM$ are exact functors for all i [Sa89, Prop. 1.5], here $Gr_iM := W_iM/W_{i-1}M$. Furthermore, Gr_iM is semisimple for all $M \in MHM(X)$ [Sa90a, §4.5].

2.2. Let $D^{b}_{mix}(X) := D^{b}(MHM(X))$ be the bounded derived category of MHM(X). By [Sa90a, Thm. 0.1] there is a faithful and exact functor

rat:
$$D^{b}_{mix}(X) \to D^{b}(X)$$
.

If $M \in D^{b}_{mix}(X)$, we say that rat(M) is the complex of sheaves *underlying* M. Further, we will often say that a functor or morphism in $D^{b}_{mix}(X)$ is compatible with the underlying functor/morphism in $D^{b}(X)$. The meaning of this is clear from the following:

2.3. By [Sa90a, (4.2.3)], there is a functor

$$\mathbf{D} \colon \mathrm{MHM}(X)^{\mathrm{op}} \to \mathrm{MHM}(X)$$

which is compatible with Verdier duality on $D^{b}(X)$. That is,

$$\operatorname{rat} \circ \mathbf{D} = \mathbf{D} \circ \operatorname{rat},$$

where the **D** on the right is Verdier duality. By [Sa90a, Prop. 2.6], the functor **D** reverses weights. That is, $\mathbf{D}\mathrm{Gr}_i M = \mathrm{Gr}_{-i}\mathbf{D}M$ and $\mathbf{D}^2 M \simeq M$ canonically for all $M \in \mathrm{MHM}(X)$. Furthermore, the isomorphism $\mathbf{D}^2 \simeq \mathrm{id}$ is compatible with the underlying isomorphism in $\mathrm{D}^{\mathrm{b}}(X)$. That is, for each $M \in \mathrm{D}^{\mathrm{b}}_{\mathrm{mix}}(X)$, if $f_M : \mathbf{D}^2 M \xrightarrow{\sim} M$ denotes the canonical isomorphism in $\mathrm{D}^{\mathrm{b}}_{\mathrm{mix}}(X)$ and $f_M^{\mathrm{rat}} : \mathbf{D}^2 \mathrm{rat}(M) \xrightarrow{\sim} \mathrm{rat}(M)$ denotes the canonical isomorphism (Verdier duality) in $\mathrm{D}^{\mathrm{b}}(X)$, then $\mathrm{rat}(f_M) = f_M^{\mathrm{rat}}$.

2.4. Let X and Y be varieties. According to [Sa90a, (4.2.13)] there is an exact bifunctor

$\boxtimes: \mathrm{MHM}(X) \times \mathrm{MHM}(Y) \to \mathrm{MHM}(X \times Y).$

By [Sa90a, (3.8.2)], the functor \boxtimes adds weights. That is, for $M \in MHM(X), N \in MHM(Y)$, we have $\operatorname{Gr}_n(M \boxtimes N) = \bigoplus_{i+j=n} \operatorname{Gr}_i M \boxtimes \operatorname{Gr}_j N$.

By [Sa90a, (2.17.4)] there is a bifunctorial isomorphism $\operatorname{rat}(M \boxtimes N) \simeq \operatorname{rat}(M) \boxtimes \operatorname{rat}(N)$ for all $M \in \operatorname{D}_{\operatorname{mix}}^{\operatorname{b}}(X), N \in \operatorname{D}_{\operatorname{mix}}^{\operatorname{b}}(Y)$. Further, [Sa90a, (2.17.4)] also implies that if Z is a third variety, then there is a trifunctorial isomorphism

$$(M \boxtimes N) \boxtimes L \simeq M \boxtimes (N \boxtimes L)$$

for all $M \in D^{\rm b}_{\rm mix}(X), N \in D^{\rm b}_{\rm mix}(Y), L \in D^{\rm b}_{\rm mix}(Z)$. The bifunctor \boxtimes and the aforementioned isomorphisms are compatible with the external tensor product on the underlying complexes of sheaves. In particular, the isomorphisms $(M \boxtimes N) \boxtimes L \simeq M \boxtimes (N \boxtimes L)$ satisfies the usual coherence law (the so called pentagon axiom) for associativity constraints. Henceforth, we will identify $(M \boxtimes N) \boxtimes L$ with $M \boxtimes (N \boxtimes L)$ and simply write $M \boxtimes N \boxtimes L$ for this object.

2.5. Let $f: X \to Y$ be a morphism of varieties. By [Sa90a, Thm. 4.3] there are functors

$$f_*, f_! \colon \mathrm{D}^{\mathrm{b}}_{\mathrm{mix}}(X) \to \mathrm{D}^{\mathrm{b}}_{\mathrm{mix}}(Y)$$

that are compatible with (the derived functors of) pushforward and pushforward with proper supports, respectively. There is a natural transformation $f_! \to f_*$ which is an isomorphism if f is proper. This morphism is compatible with the underlying morphism on the corresponding functors on sheaves [Sa90a, (4.3.3)].

Furthermore, there is a natural isomorphism $\mathbf{D}f_* \simeq f_!\mathbf{D}$ which is compatible with the underlying structure on sheaves [Sa90a, (4.3.5)]. We will identify $\mathbf{D}f_*$ with $f_!\mathbf{D}$ via this isomorphism.

The functor f_* raises weights and the functor $f_!$ lowers weights [Sa90a, (4.5.2)]. That is, if M is of weight $\geq n$ (resp. $\leq n$), then f_*M (resp. $f_!M$) is also of weight $\geq n$ (resp. $\leq n$).

2.6. According to [Sa90a, $\S4.4$], there are also functors

$$f^*, f^! \colon \mathrm{D}^{\mathrm{b}}_{\mathrm{mix}}(Y) \to \mathrm{D}^{\mathrm{b}}_{\mathrm{mix}}(X)$$

such that f^* (resp. $f_!$) is left adjoint to f_* (resp. $f^!$). The functor f^* (resp. $f^!$) and the adjunction maps are compatible with the corresponding structures on pullback (resp. extraordinary pullback) on sheaves. As $\mathbf{D}f_* = f_!\mathbf{D}$, taking transposes we obtain that $\mathbf{D}f^* = f^!\mathbf{D}$. Using this (or adjunction) it also follows that f^* lowers weights, while $f^!$ raises weights.

Given another morphism of varieties $g: Y \to Z$, there are canonical isomorphisms $(gf)^* \simeq f^*g^*$ and $(gf)_! \simeq g_!f_!$ that are compatible with the underlying isomorphisms on functors on sheaves. In particular, these isomorphisms satisfy the following cocycle property: let $h: Z \to Z'$ be a third morphism of varieties, then the following diagrams commute

$$\begin{array}{cccc} (hgf)^* & \longrightarrow f^*(hg)^* & & (hgf)_! & \longrightarrow (hg)_!f_! \\ & & & \downarrow & & \downarrow \\ (gf)^*h^* & \longrightarrow f^*g^*h^* & & h_!(gf)_! & \longrightarrow h_!g_!f_! \end{array}$$

Taking transposes, we obtain canonical isomorphisms $(gf)_* \simeq g_*f_*$ and $(gf)! \simeq f!g!$ that satisfy the obvious analogue of the above cocycle property. For $? \in \{*, !\}$, we identify (gf)? (resp. $(gf)_?$) with f?g? (resp. $g_?f_?$) via these isomorphisms.

2.7. Let flip: $X \times Y \to Y \times X$ be the isomorphism of varieties given by $(x, y) \mapsto (y, x)$. Then, by [Sa90a, (4.4.1)], there is a bifunctorial isomorphism

$$\sigma \colon \operatorname{flip}_*(M \boxtimes N) \xrightarrow{\sim} N \boxtimes M$$

for all $M \in D^{b}_{mix}(X)$, $N \in D^{b}_{mix}(Y)$. This isomorphism is compatible with the underlying canonical isomorphism in $D^{b}(X \times Y)$. In particular, $\sigma^{2} = \text{id}$ and σ satisfies the usual coherence law (the so called hexagon axiom) demanded of such an isomorphism.

2.8. For all $M, N \in D^{\mathrm{b}}_{\mathrm{mix}}(X)$, define

$$M \otimes N := \Delta^*(M \boxtimes N)$$
 and $\mathscr{H}om(M, N) := \Delta^!(\mathbf{D}M \boxtimes N),$

where $\Delta: X \to X \times X$ is the diagonal map. By [Sa90b, Cor. 2.9] there is a trifunctorial isomorphism

$$\operatorname{Hom}(L,\mathscr{H}om(M,N)) \simeq \operatorname{Hom}(L \otimes M,N)$$

for all $L, M, N \in D^{\mathrm{b}}_{\mathrm{mix}}(X)$ which is compatible with the corresponding isomorphism on the underlying objects in $D^{\mathrm{b}}(X)$. Here the functor underlying $\mathscr{H}om$ is the internal sheaf Hom in $D^{\mathrm{b}}(X)$.

2.9. Let X, Y, Z be varieties and $f: X \to Y$ a morphism. Since f can be factorized as a closed immersion (the graph map) followed by a projection, it follows from [Sa90a, (4.4.1), (4.4.2)] that there is a functorial isomorphism

$$(f \times id)^* (M \boxtimes N) \simeq f^* M \boxtimes N$$

for all $M \in D^{\mathrm{b}}_{\mathrm{mix}}(Y)$, $N \in D^{\mathrm{b}}_{\mathrm{mix}}(Z)$ which is compatible with the underlying isomorphism on sheaves.

2.10. Let $f: X \to Y$ be a morphism of varieties. Let $M, N \in D^{\mathrm{b}}_{\mathrm{mix}}(Y)$. Let $\Delta_X: X \to X \times X$ and $\Delta_Y: Y \to Y \times Y$ be the diagonal maps. Then, by **2.8** and **2.9**,

$$f^*(M \otimes N) = (\Delta_Y \circ f)^*(M \boxtimes N)$$
$$= ((f \times f) \circ \Delta_X)^*(M \boxtimes N)$$
$$\simeq \Delta_X^*(f^*M \boxtimes f^*N)$$
$$= f^*M \otimes f^*N.$$

This isomorphism is functorial and compatible with the underlying isomorphism in $D^{b}(Y)$, since all the intermediary isomorphisms are. Taking transposes we obtain a bifunctorial isomorphism

$$f_*\mathscr{H}om(f^*N,L)\simeq\mathscr{H}om(N,f_*L)$$

for all $L \in D^{b}_{mix}(X)$, $N \in D^{b}_{mix}(Y)$ which is compatible with the corresponding isomorphisms on the underlying objects in $D^{b}(X)$.

2.11. Let X, Y be varieties. By [Sa90a, Prop. 2.6, (2.17.4)] (also see [Sa90b, (2.9.3)]), we have a bifunctorial isomorphism

$$\mathbf{D}(M \boxtimes N) \simeq \mathbf{D}M \boxtimes \mathbf{D}N$$

for all $M \in D^{\mathbf{b}}_{\mathrm{mix}}(X), N \in D^{\mathbf{b}}_{\mathrm{mix}}(Y)$ which is compatible with the underlying isomorphism in $D^{\mathbf{b}}(X \times Y)$.

Let $M, N \in D^{\mathrm{b}}_{\mathrm{mix}}(X)$ and let $\Delta \colon X \to X \times X$ be the diagonal map. By the above and the fact that $\mathbf{D}\Delta^* = \Delta^{!}\mathbf{D}$ (see **2.6**), we have

$$\mathcal{H}om(M, N) = \Delta^{!}(\mathbf{D}M \boxtimes N)$$
$$= \mathbf{D}\Delta^{*}\mathbf{D}(\mathbf{D}M \boxtimes N)$$
$$\simeq \mathbf{D}\Delta^{*}(M \boxtimes \mathbf{D}N)$$
$$= \mathbf{D}(M \otimes \mathbf{D}N).$$

Further, this isomorphism is canonical and compatible with the underlying isomorphism in $D^{b}(X)$, since all the intermediary isomorphisms are.

2.12.

$$f^{!}\mathscr{H}om(M,N) \simeq f^{!}\mathbf{D}(M \otimes \mathbf{D}N)$$
$$= \mathbf{D}f^{*}(M \otimes \mathbf{D}N)$$
$$\simeq \mathbf{D}(f^{*}M \otimes f^{*}\mathbf{D}N)$$
$$= \mathbf{D}(f^{*}M \otimes \mathbf{D}f^{!}N)$$
$$\simeq \mathscr{H}om(f^{*}M, f^{!}N).$$

Taking transposes we obtain a canonical isomorphism

1

$$f_! M \otimes N \simeq f_! (M \otimes f^* N)$$

that is compatible with the underlying isomorphism in $D^{b}(X)$. Taking transposes (note the asymmetry in the isomorphism above) we also obtain a canonical isomorphism

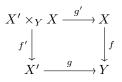
$$f_*\mathscr{H}om(f_!)\simeq\mathscr{H}om(f_!,)$$

2.13.

- (i) Let $p: X \times Y \to X$ and $q: X \times Y \to Y$ be the projection maps. Then $M \boxtimes N \simeq p^* M \otimes q^* N$ canonically for all $M \in D^{\mathrm{b}}_{\mathrm{mix}}(X), N \in D^{\mathrm{b}}_{\mathrm{mix}}(Y)$.
- (ii) Let $\Delta_X \colon X \to X \times X$ be the diagonal map, then $M \otimes N \simeq \Delta_X^*(M \boxtimes N)$ canonically for all $M, N \in \mathrm{D}^{\mathrm{b}}_{\mathrm{mix}}(X)$.
- (iii) [Sa90b, Cor. 2.9] There are trifunctorial isomorphisms $\operatorname{Hom}(L \otimes M, N) \simeq \operatorname{Hom}(K, \mathscr{Hom}(M, N))$ for all $L, M, N \in \operatorname{D^b_{mix}}(X)$.
- (iv) [Sa90b, (2.9.1)] There are canonical isomorphisms $\underline{\mathbf{C}}_X \otimes M \simeq M \simeq M \otimes \underline{\mathbf{C}}_X$ for each $M \in \mathrm{D}^{\mathrm{b}}_{\mathrm{mix}}(X)$.
- (v) [Sa90a, §4.4] The functor f^* (resp. $f_!$) is left adjoint to f_* (resp. $f^!$).
- (vi) Combining (iii), (iv) and (v) we obtain isomorphisms of functors

 $\operatorname{Hom}(-, f_* \mathscr{H}om(f^*M, N) \simeq \operatorname{Hom}(f^* -$

- (vii) [Sa90a, (4.3.2), §4.4] If $g: Y \to Z$ is a morphism of varieties, then there are canonical isomorphisms $(gf)_* \simeq g_*f_*$, $(gf)_! \simeq g_!f_!$, $(gf)^* \simeq f^*g^*$ and $(gf)_! \simeq f^!g^!$.
- (viii) [Sa90a, (4.3.3)] There is a natural morphism $f_! \to f_*$, which is an isomorphism whenever f is *proper*.
- (ix) [Sa90a, (4.4.2)] If f is smooth of relative dimension d, then $f^! \simeq f^*[2d](d)$.
- (x) Proper base change [Sa90a, (4.4.3)]: Given a cartesian diagram of varieties



there is a natural isomorphism of functors $g^* f_! \simeq f'_! g'^*$.

(xi) [Sa90a, (4.5.2)] The functors $f_*, f^!$ increase weights and $f^*, f_!$ decrease weights. That is, if \mathcal{A}^{\cdot} is of weight $\leq n$ (resp. $\geq n$), then $f_!\mathcal{A}^{\cdot}, f^*\mathcal{A}^{\cdot}$ (resp. $f_*\mathcal{A}^{\cdot}, f^!\mathcal{A}^{\cdot}$) are of weight $\leq n$ (resp. $\geq n$).

References

- [Sa89] M. SAITO, Introduction to mixed Hodge modules, Astérisque no. 179-180 (1989), 10, 145-162.
- [Sa90a] M. SAITO, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221-333.
 [Sa90b] M. SAITO, Extension of mixed Hodge modules, Composition Math. 74 (1990), no. 2, 209-234.
- [Sc] J. SCHÜRMANN, Topology of singular spaces and constructible sheaves, Mathematics Institute of the Polish Academy of Sciences, Mathematical Monographs (New Series) 63, Birkhäuser Verlag, Basel (2003).
- [Sp] T. A. SPRINGER, A purity result for fixed point varieties in flag manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), no. 2, 271-282.

Department of Mathematics, University of Wisconsin, Madison, WI 53706 $E\text{-}mail\ address: wirk@math.wisc.edu$