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Introduction

Plato said God is a geometer. Jacobi changed this to God is an arithmetician. Then came
Kronecker and fashioned the memorable expression, God created the natural numbers, and all
the rest is the work of man [Burton]. These words may sometimes give us the impression that
geometry and number theory are disparate fields, on the contrary, some of the most powerful
methods in arithmetic rely on geometric results. One such result is Minkowski’s Convex Body
Theorem. In this paper we will outline a proof of this result and indicate how it has applications
to number theory. Specifically we will give a short proof of Fermat’s Four Squares problem us-
ing Minkowski’s Theorem and also outline the theorem’s applications to algebraic number theory.

(Note: the proofs presented here follow the outlines in [Stewart], we fill in additional details
when neccessary.)

Lattices

Let e1, . . . , em be a linearly independent set of vectors in Rn. The additive subgroup of (Rn,+)
generated by e1, . . . , em is called a lattice of dimension m, generated by e1, . . . , em. Note that
a lattice of dimension m is a free abelian group of rank m. If L is a lattice generated by
{e1, . . . , em} we define the fundamental domain T to consist of all elements

∑
aiei (ai ∈ R) for

which 0 ≤ ai < 1, notice that this depends on the choice of generators.

Let S denote the set of all complex numbers of modulus 1, under multiplication S is a group
and is called the circle group. Let Tn denote the direct product of n copies of S, and call this
the n-dimensional torus.

Theorem 1. If L is an n-dimensional lattice in Rn then Rn/L is isomorphic to the n-dimensional
torus Tn

Proof. Let {e1, . . . , en} be the generators for L. Now {e1, . . . , en} is a R-basis for Rn. Define
φ : Rn → Tn by

φ(a1e1 + · · ·+ anen) = (e2πia1 , . . . , e2πian)

Now φ is an onto homomorphism with kernel of L, hence by the group isomorphism theorems
the result follows.
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Note that when we restrict the theorem to the one dimensional case and the the lattice to Z
we get that the quotient group R/Z is isomorphic to the circle group S.

Also note that the map φ as defined in the previous theorem, when restricted to the funda-
mental domain T , yields a bijection T → Tn.

The volume v(X) of a subset X ⊆ Rn is defined as the value of the multiple integral∫
X

dx1 . . . dxn

where (x1, . . . , xn) are cartesian coordinates. Note that the volume only exists when the integral
does.
Let L ⊆ Rn be a lattice of dimension n, so that Rn/L ∼= Tn. Let T be a fundamental domain
of L. We previously noted the existence of a bijection

φ : T → Tn

For any subset X of T define the volume v(X) by

v(X) = v(φ−1(X))

which exists if and only if φ−1(X) has a volume in Rn.

Theorem 2. Let γ : Rn → Tn be the natural homomorphism with kernel L. If X is a bounded
subset of Rn and v(X) exists, and if v(γ(X)) 6= v(X), then γ|X (γ restricted to X) is not
injective.

Proof. Assume γ|X is injective. Now X, being bounded, intersects only a finite number of the
sets T + l, for T a fundamental domain and l ∈ L. Put

Xl = X ∩ (T + l)

Then we have
X = Xl1 ∪ . . . ∪Xln

For each li define
Yli = Xli − li

so that Yli ⊆ T . We claim that the Yli are disjoint. Since γ(x − li) = γ(x) for all x ∈ Rn this
follows from the assumed injectivity of γ. Now

v(Xli) = v(Yli)

for all i. Also
γ(Xli) = φ(Yli)

where φ is the bijection T → Tn. Now we compute:

v(γ(X)) = v(γ(∪Xli))
= v(∪Yli)

=
∑

v(Yli) by disjointness

=
∑

v(Xli)

= v(X)

which is a contradiction.
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Minkowski’s Theorem

A subset X ⊆ Rn is convex if whenever x, y ∈ X then all points on the straight line segment
joining x to y also lie in X. Equivalently, X is convex if, whenever x, y ∈ X, the point

λx + (1− λ)y

belongs to X for all real λ, 0 ≤ λ ≤ 1. A subset X ⊆ Rn is (centrally) symmetric if x ∈ X
implies −x ∈ X, i.e X is invariant under reflection in the origin.

Theorem 3 (Minkowski’s Theorem). Let L be an n-dimensional lattice in Rn with fundamental
domain T , and let X be a bounded symmetric convex subset of Rn. If

v(X) > 2nv(T )

then X contains a non-zero point of L.

Proof. Double the size of L to obtain a lattice 2L with fundamental domain 2T of volume 2nv(T )
(note that this is equivalent to shrinking X linearly by a half, and hence reducing its volume by
a factor of 2n). Consider the torus

Tn = Rn/2L

By definition of volume
v(Tn) = v(2T ) = 2nv(T )

Now the natural map γ : Rn → Tn cannot preserve the volume of X since this is strictly larger
than v(Tn): since γ(X) ⊆ Tn we have that

v(γ(X)) ≤ v(Tn) = 2nv(T) < v(X)

It follows by Theorem 2 that γ|X is not injective. Hence there exist x1 6= x2, x1, x2 ∈ X, such
that

γ(x1) = γ(x2) (1)

or equivalently
x1 − x2 ∈ 2L

But x2 ∈ X, so −x2 ∈ X by symmetry; and now by convexity

1
2
(x1) +

1
2
(−x2) ∈ X

or
1
2
(x1 − x2) ∈ X

But by Equation 1 we already have that

1
2
(x1 − x2) ∈ L

We have mentioned earlier that the fundamental domain of a lattice is dependant on the
choice of basis, however, the volumes of all these distinct fundamental domains are equal. We
now prove this and give a nice expression for the volume of the fundamental domain.
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Lemma 4. Let L be an n-dimensional lattice in Rn with basis {e1, . . . , en}. Suppose

ei = (a1i, . . . , ani)

Then the volume of the fundamental domain T of L defined by this basis

v(T ) = |det(aij)|

Proof. We have that

v(T ) =
∫

T
dx1 . . . dxn

Define new variables by
xi =

∑
j

aijyj

The Jacobian of this transformation is equal to det(aij), and T is the set of points
∑

aijyi with
0 ≤ yi < 1. By the transformation formula for multiple integrals [Apostol] we have that

v(T ) =
∫

T
|det(aij)|dy1 . . . dyn

= |det(aij)
∫ 1

0
dy1 . . . dyn

= |det(aij)|

Corollary 5. The volumes of the distinct fundamental domains of a lattice are all equal

Proof. From the theory of free abelian groups we know that bases of a lattice (a free abelian
group) are related by a unimodular matrix, so the result follows on applying the previous
theorem. For further details see [Stewart]

Corollary 6. Let L be an n-dimensional lattice in Rn, with basis {e1, . . . , en} and

ei = (a1i, . . . , ani)

where each aij ∈ Z, then the volume of the fundamental domain T is given by

v(T ) = |Zn/L|

Proof. Again from the theory of free abelian groups we have that

|Zn/L| = |det(aij)|

where {e1, . . . , en} is a basis for L and

ei = (a1i, . . . , ani)

For further details see [Stewart]
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The Four Squares Theorem

We now give a traditional application of Minkowski’s theorem to giving a short and elegant
proof of Fermat’s Four Squares Theorem.

Theorem 7. Every positive integer n is expressible as the sum of four squares.

Proof. (Note: throughout this proof we assume p is an odd prime as 2 = 12 + 12 + 0 + 0) We
claim that the congruence

u2 + v2 + 1 ≡ 0 (mod p)

has a solution u, v in the integers. This is because both u2 and −1− v2 take on (p + 1)/2 values
as u, v run through 0, . . . , p− 1;So we have some u, v that satisfy

u2 + v2 + 1 ≡ 0 (mod p)

Consider the lattice L in R4 consisting of (a, b, c, d) ⊆ Z4 such that

c ≡ ua + vb, d ≡ ub− va (mod p)

It is easy to verify that the fundamental domain has volume p2 Now a 4-dimensional sphere,
center the origin, has volume πr4

2 , and if we choose to make r2 say 1.9p, then this is greater than
16p2. So applying Minkowski’s Theorem there exists a non-zero lattice point (a,b,c,d) in this
4-sphere, so:

a2 + b2 + c2 + d2 ≤ r2 = 1.9p < 2p

Now modulo p, we have

a2 + b2 + c2 + d2 ≡ a2 + b2 + (ua + vb)2 + (ub− va)2

≡ a2 + b2 + u2a2 + v2b2 + 2uavb + u2b2 + v2a2 − 2ubva

≡ (a2 + b2)(1 + u2 + v2)
≡ 0

Thus, as 0 6= a2 + b2 + c2 + d2 < 2p we have that:

a2 + b2 + c2 + d2 = p

So we have the required result for all primes, now using the fundamental theorem of arithmetic
and the following identity due to Euler:

(a2 + b2 + c2 + d2)(A2 + B2 + C2 + D2)
= (aA− bB − cC − dD)2 + (aB + bA + cD − dC)2

+ (aC − bD + cA + dB)2 + (aD + bC − cB + dA)2

we have that the result holds for all positive integers.

Minkowski’s Theorem and the Theory of Algebraic Numbers

In this section we assume that the reader has a working knowledge some familiarity with alge-
braic number theory. Full details can be found in [Stewart], [Lang] and [Hardy and Wright].
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Quoting [Stewart]: ‘Algebraic Number Theory’ can be read in two distinct ways. One is the
theory of numbers viewed algebraically, the other is the study of algebraic numbers. Both apply
here. The focus of algebraic number theory is to extend the properties of the natural numbers to
more general number structures: algebraic number fields, and their rings of algebraic integers.
These structures have most of the standard properties that we associate with ordinary whole
numbers, but some subtle properties sometimes fail to generalize. One particular property that
fails to generalize and can be problematic is that of unique factorization.

The notion of prime in the regular whole numbers can be viewed as two different ideas. First
is the notion of being ’irreducible’ in the sense that a prime has no factors other than 1 and
itself. The second being that if p is a factor of a product ab then it must be a factor of either a
or b. It turns out that in certain number fields these ideas do not concide. In an integral domain
a prime is always irreducible but the reverse is not always true, as a result unique factorization
into irreducibles breaks down. The factorization of ideals in such rings turns out to be more
satisfactory: every ideal is a unique product of prime ideals. The extent to which factorization
in these rings is not unique can be ‘measured’ by the group of ideal classes (fractional ideals
modulo principal ones). This group of ideal classes is called the class group and its order: called
the class number turns out to be of crucial importance in the theory of numbers and many deep
and delicate results are related to its arithmetic properties. For instance unique factorization
holds in a ring of integers if and only if the class number is 1. In general the larger the class
number the more ‘non-unique’ the factorization.

Due to length restrictions on this paper we cannot go into full explanations but the following
are two important results on the class group that utilize Minkowski’s Theorem. For full details
we again refer the reader to [Stewart], [Lang] and [Hardy and Wright].

Theorem 8. The class group of number field is a finite abelian group. The class number h is
finite.

Theorem 9. Every non-zero ideal of the ring of integers is equivalent to an ideal whose norm
is ≤ ( 2

π )t
√
|∆|.
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