LOCALIZATION

R. VIRK

Let A be a commutative ring (with 1). Let $S \subseteq A$ be a multiplicative set, i.e., $1 \in S$ and if $x, y \in S$, then $xy \in S$. Suppose $f : A \to B$ is a ring homomorphism satisfying

- (i) f(x) is a unit of B for all $x \in S$;
- (ii) if $g: A \to C$ is a ring homomorphism taking every element of S to a unit of C, then there exist a unique homomorphism $h: B \to C$ such that $g = h \circ f$;

then B is uniquely determined up to isomorphism, and is called the *localiza*tion of A with respect to S. We write $B = S^{-1}A$ and call $f: A \to S^{-1}A$ the canonical map. We prove the existence of $S^{-1}A$ as follows: define a relation \sim on the set $A \times S$ by $(a, s) \sim (b, s')$ if and only if there exists $t \in S$ such that t(s'a - sb) = 0; it is easy to check that this is an equivalence relation (if we just have s'a - sb = 0 in the definition, the transitive law fails when S has zero divisors). We write $\frac{a}{s}$ for the class of (a, s) and define sums and products by the usual rules for calculating with fractions, i.e. $\frac{a}{s} + \frac{b}{s'} = \frac{as' + bs}{ss'}$ and $\frac{a}{s}\frac{b}{s'} = \frac{ab}{ss'}$. This makes B a ring and defining $f: A \to B$ by $a \mapsto \frac{a}{1}$ we see that f is a ring homomorphism satisfying the required properties. From this construction we also see that kernel of the canonical map $f: A \to S^{-1}A$ is given by ker $(f) = \{a \in A \mid sa = 0 \text{ for some } s \in S\}$.

Example 0.1. Let \mathfrak{p} be a prime ideal of A. Then $S = A - \mathfrak{p}$ is multiplicatively closed. We write $A_{\mathfrak{p}}$ for $S^{-1}A$ in this case. The elements $\frac{a}{s}$, $a \in \mathfrak{p}$ form an ideal \mathfrak{m} in $A_{\mathfrak{p}}$. If $\frac{b}{t} \notin \mathfrak{m}$, then $b \notin \mathfrak{p}$, hence $b \in S$ and therefore $\frac{b}{t}$ is a unit in $A_{\mathfrak{p}}$. Consequently, \mathfrak{m} is the unique maximal ideal in $A_{\mathfrak{p}}$.

Remark 0.2. A ring with a unique maximal ideal is called a *local ring*.

Example 0.3. Let $f \in A$, then $S = \{f^n\}_{n \ge 0}$ is multiplicatively closed. We write A_f for $S^{-1}A$ in this case.

The construction of $S^{-1}A$ can be carried through for an A-module M in place of the ring A. Define an equivalence relation \sim on $M \times S$ by:

 $(m,s) \sim (m',s') \Leftrightarrow$ there exists $t \in S$ such that t(s'm - sm') = 0.

Let $\frac{m}{s}$ denote the class of the pair (m, s), let $S^{-1}M$ denote the set of such fractions made into a $S^{-1}A$ -modile with the obvious definitions of addition and scalar multiplication. (Note that $S^{-1}M$ is also an A-module via the canonical map $A \to S^{-1}A$.) As in the examples before, write $M_{\mathfrak{p}}$ when $S = A - \mathfrak{p}$ and M_f when $S = \{f^n\}_{n \geq 0}$.

The module $S^{-1}M$ satisfies the following universal property: suppose we are given a map φ from M to an A-module N on which the elements of S act by automorphisms. Then there is a unique map $\varphi' : S^{-1}M \to N$ such that $\varphi = \varphi' \circ \iota$.

Let $\varphi : M \to N$ be an A-module homomorphism. This gives rise to an $S^{-1}A$ module homomorphism $S^{-1}\varphi : S^{-1}M \to S^{-1}N$, namely $S^{-1}\varphi$ maps $\frac{m}{s}$ to $\frac{\varphi(m)}{s}$. We have that $S^{-1}(\varphi \circ \psi) = S^{-1}(\varphi) \circ S^{-1}(\psi)$ and that $S^{-1}\mathrm{id}_M = \mathrm{id}_{S^{-1}M}$. Thus, localization give a functor from the category of A-modules to the category of $S^{-1}A$ -modules.

Proposition 0.4. Localization is an exact functor. That is, if $M' \xrightarrow{f} M \xrightarrow{g} M''$ is exact at M, then

$$S^{-1}M' \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} M''$$

is exact at $S^{-1}M$.

Proof. We have that $S^{-1}g \circ S^{-1}f = S^{-1}(f \circ g) = 0$. Hence, $\operatorname{im}(S^{-1}f) \subseteq \operatorname{ker}(S^{-1}g)$. Conversely, suppose $\frac{m}{s} \in \operatorname{ker}(S^{-1}g)$. Then tg(m) = g(tm) = 0 for some $t \in S$. So $tm \in \operatorname{ker} g$, hence tm = f(m') for some $m' \in M'$. Thus, $\operatorname{in} S^{-1}M$ we have $\frac{m}{s} = \frac{f(m')}{st} = (S^{-1}f)(\frac{m'}{st}) \in \operatorname{im}(S^{-1}f)$. Hence $\operatorname{ker}(S^{-1}g) \subseteq \operatorname{im}(S^{-1}f)$.

Proposition 0.5. Let M be an A-module. Then the $S^{-1}A$ modules $S^{-1}M$ and $S^{-1}A \otimes_A M$ are isomorphic; more precisely this isomorphism is given by the map

$$f: S^{-1}A \otimes_A M \to S^{-1}M,$$
$$\frac{a}{s} \otimes m \mapsto \frac{am}{s}.$$

Proof. The map $S^{-1}A \times M \to S^{-1}M$ is A-bilinear induces the map f and is clearly surjective.

Let $\sum_{i} \frac{a_i}{s_i} \otimes m_i$ be any element of $S^{-1}A \otimes_A M$. Then setting $s = \prod_i s_i$ and $t_i = \prod_{i \neq i} s_i$ we have that

$$\sum_{i} \frac{a_i}{s_i} \otimes m_i = \sum_{i} \frac{a_i t_i}{s} \otimes m_i = \sum_{i} \frac{1}{s} \otimes a_i t_i m_i.$$

Thus, every element of $S^{-1}A \otimes_A M$ can be written in the form $\frac{1}{s} \otimes m$. Suppose $f(\frac{1}{s} \otimes m) = 0$, then $\frac{m}{s} = 0$, i.e. tm = 0 for some $t \in S$. Thus,

$$\frac{1}{s} \otimes m = \frac{t}{st} \otimes m = \frac{1}{st} \otimes tm = 0.$$

Hence, f is injective and an isomorphism.

Proposition 0.6. Let M be an A-module, and let $m \in M$. Then the following are equivalent:

(i) m = 0;

LOCALIZATION

- (ii) $\frac{m}{1} = 0$ in $M_{\mathfrak{p}}$ for each prime ideal \mathfrak{p} of A;
- (iii) $\frac{\dot{m}}{1} = 0$ in $M_{\mathfrak{m}}$ for each maximal ideal \mathfrak{m} of A;

Proof. It is clear that (i) \Rightarrow (ii) \Rightarrow (iii). To see that (iii) \Rightarrow (i), let $m \in M$ be such that $\frac{m}{1} = 0$ in $M_{\mathfrak{m}}$ for each maximal ideal \mathfrak{m} of A. Suppose Ann $(m) \neq 0$ A, let \mathfrak{m}' be a maximal ideal containing Ann (m). Then we have that sm = 0for some $s \in A - \operatorname{Ann}(m)$, which is a contradiction. Thus, $\operatorname{Ann}(m) = A$ and m = 0.

Corollary 0.7. Let M be an A-module. Then the following are equivalent:

- (i) M = 0;
- (ii) $M_{\mathfrak{p}} = 0$ for each prime ideal \mathfrak{p} of A;
- (iii) $M_{\mathfrak{m}} = 0$ for each maximal ideal \mathfrak{m} of A.

Proposition 0.8. Let $\varphi : M \to N$ be an A-module homomorphism. Then the following are equivalent:

- (i) φ is injective;
- (ii) $\varphi_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is injective for each prime ideal \mathfrak{p} of A;
- (iii) $\varphi_{\mathfrak{m}}^{\mathsf{r}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is injective for each maximal ideal \mathfrak{m} of A.

Similarly with 'injective' replaced by 'surjective' throughout.

Proof. From 0.4 we have that $(i) \Rightarrow (ii)$, $(ii) \Rightarrow (iii)$ is clear. To see $(iii) \Rightarrow (i)$, let $M' = \ker \varphi$. Then $0 \to M' \to M \to N$ is exact, hence $0 \to M'_{\mathfrak{m}} \to M_{\mathfrak{m}} \to M$ $N_{\mathfrak{m}}$ is exact by 0.4. Thus, $M'_{\mathfrak{m}} \simeq \ker \varphi_{\mathfrak{m}} = 0$ since $\varphi_{\mathfrak{m}}$ is injective. Hence, M' = 0 by the previous corollary and φ is injective.

The proof with 'injective' replaced by 'surjective' is similar.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WI 53706 *E-mail address*: virk@math.wisc.edu