HOPF ALGEBRAS

R. VIRK

0.1. Notation. Let k be a field. For simplicity we will assume k to be algebraically closed.
We will write ® for the usual tensor product over k. Further, for a k-vector space V, set
V* = Homy(V, k). All modules considered will be left modules unless otherwise stated.

0.2. Algebras and coalgebras. An algebra is a k-vector space with linear maps

m: ARA — A,
1 k — A,

called the multiplication and the unit respectively, such that the following diagrams commute

id®2 1®id

ARk— A® A ERA— AR A ARAR®A AR A

SR O I

AT)A A——A AR A A

id m

id®m

The commutativity of the third diagram is the usual associativity axiom. Define a linear
mapoc: ARA— AR Abya®b— b®a. Then A is commutative if the diagram

A®A

A® Am>‘ A
commutes.

Suppose A and B are algebras with multiplication m4 and mpg respectively. Then A ® B
is an algebra with multiplication m 4¢p defined to be the composite

ida®o®idp maA®my

A®B®A®B

That is (a ® b)(a' @ V') = (ad’ @ bY).
A coalgebra is a k vector space with linear maps

ARA®RB®B A®B.

called the comultiplication and the counit respectively, such that the following diagrams
commute

Ak A A Eo ACEY A0 A AQ A A998 A® A
NT TA ~ A A®id1\ TA
Ae— A Ae— A A® A - A
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The commutativity of the third diagram is referred to as coassociativity. For a € A we will
use Sweedler notation and write
= am ®ap
a

Let o be as before, a coalgebra is said to be cocommutative if the diagram

A®A

A®A<A—A

commutes.
Let A be an algebra. Identify (A ® A)* with A* ® A*. This induces a coalgebra structure
on A*, namely

A:A"— A" ® A",
¢ (a®d — p(ad’)).

Dually, for a coalgebra C' the coproduct induces an algebra structure on C*. Namely, if
o0 € C" then (1) (@) = ¥, p(xn)) (e (), where a € C.

Let C' and D be coalgebras with coproduct Ax and Ap respectively. Then C ® D is a
coalgebra with comultiplication Aggp defined to be the composite

Ac®Ap ide®o®idp

C®D CeCeD®D CeDeC®D.

0.3. Convolution product. Suppose A is an algebra and C' is a coalgebra. Identify A ®
C* with Homg(C, A). This induces a multiplication *, called convolution, on Homy(C, A).
Namely, for ¢, 1 € Homy(C, A)

(@ *)(x Zs@

The identity of this ring is given by ¢ oe.

0.4. Hopf algebras. A Hopf algebra is a k-vector space A that is both an algebra and
coalgebra such that

(i) the comultiplication A and the counit e are homomorphisms of algebras;
(ii) the multiplication m and the unit 2 are homomorphisms of coalgebras;
(iii) A is equipped with a bijective k-module map S : A — A, called the antipode, such
that the following diagrams commute

S®id id®S

ARA— A®A ARA— A® A

S R N

A 10€ A A 10¢€ A

Proposition 0.1. The antipode is an algebra and coalgebra antiautomorphism, i.e. S(ab) =
S(0)S(a) and 3, S(ag) ® S(an)) = Yg@ S(a)q) @ S(a)e)
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Proof. Consider Hom(A® A, A) as an algebra under the convolution product. Let M, S’ S” €
Hom(A ® A, A) be the maps given by

M(a®d) = ad, S'(a®ad") = S(da)S(a) and S"(a®a") = S(ad).

Then
M * S'(x =Y M((z®y)1)S (z @ y)@)
TRy
= M(za) @ yu)S' (z@ @ ye)
= zaynSw)S(e)
z,y
Similarly
S % => 8"z @ y)@)M((z®y)e)
TRy

= 5" (x1) @ ya)) M () © yez))
=Y S(zaym) (@@ye)
Y
= S((xy) 1) (@y) )
Ty
= e(zy)

Now consider Hom(A, A ® A) as an algebra under convolution. Let
A= Z( a@) @ ag)(S(agw) ® S(aw))
= Z a@)) © ag2)S(as)
= Z ®e(a@)
= Z am)S(e(a@)ap) © 1

= Z a@yS

=¢c(a)® 1.



Similarly

§"x A= A(S(aw))Alag)

= A(S(an))aw)
= A(e(a))
=cla)®1
[

0.5. Some representation theory. Let A be a Hopf algebra throughout. We turn the
field k£ into an A-module via

a-1=¢(a), a€ A

This is the trivial representation and by an abuse of notation is also denoted by k. The
adjoint representation of A on itself is given by

ad : AR A — A,
a®ad — Za(l)a'S(a(g)).

The regular representation of A on itself is given by the multiplication of A. Let V be an
A-module, then V* is also an A-module via

a- f(v) = f(S(a)v), acAveV feV"
Furthermore, given A-modules V and W, V ® W is also an A-module via

a'(v®w):Za(1)v®a(2)w, a€eAveV,weW.

We also give Homy (U, V') an A-module structure through the identification
V @U* ~Homy(U,V) given by v®@u* — (f :u — u*(u)v).

We note that it is implicit in this statement that for a module V, V* will always be the
restricted dual of V' (i.e. functions with finite dimensional support).

Warning. In general V ® U* is not isomorphic to U* ® V' as an A-module.
Let M be an A module. The invariants of M are elements of the submodule
M4 ={m € M|am = e(a)m for all a € A}.

Remark 0.2. Taking invariants is a left exact functor on the category of A-modules. Further,
this functor is representable, namely M* ~ Hom(k, M).

Lemma 0.3. Let M, N be A-modules. Then

Hom (M, N) = Homy (M, N)*.
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Proof. Suppose ¢ € Hom4 (M, N), then

m) = Z amp(S(ag))m)
= Z amS(awe)p(m)

= e(a)p(m).
Conversely, suppose ¢ € Homy(M, N)# and a € A then

= ame(a)e(m)

= Za: aqyp(e(a@)m)

= Z 2))a()mn)
— Z )(a@ym

_ Z m)

= Z p(e(a)a@m)

= Sﬁ(am)-

Write Ext (M, —) for the right derived functors of Hom 4 (M, —).
Corollary 0.4. Let M, N be A-modules, then there is a natural isomorphism
ExtYy (M, N) ~ Ext’ (k, Homy(M, N))
Proof. We have the following isomorphism of functors
Hom (M, —) =~ Homy (M, —)* ~ Hom 4 (k, Homy (M, —)).
Thus, the corresponding derived functors are isomorphic. 0

0.6. An example: Group algebras. Let G be a finite group and let C[G] be its group
algebra over C. Then A = C[G] is a Hopf algebra with

Alg)=g®g, Slg =g and e(g)=1  geq.

Zg

gEG’
The element € is a central in A. Furthermore, g = Qg = Q for all g € G. Thus, letting
k denote the trivial module, we have that QA ~ k®¢l. Furthermore, as € is a central
idempotent, A ~ QA @ (1 — Q)A. Hence, k is a projective module. Thus, if M is a finite

dimensional A-module, then Ext’(k, M) = 0 for i > 0. Consequently, if M and N are finite
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dimensional A-modules then by Corollary 0.4 we have that Ext’(M,N) = 0, i > 0. In
particular all finite dimensional A-modules are completely reducible.

Remark 0.5. The above arguments generalize to F[G], where |G| does not divide charF.
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