
HOPF ALGEBRAS

R. VIRK

0.1. Notation. Let k be a field. For simplicity we will assume k to be algebraically closed.
We will write ⊗ for the usual tensor product over k. Further, for a k-vector space V , set
V ∗ = Homk(V, k). All modules considered will be left modules unless otherwise stated.

0.2. Algebras and coalgebras. An algebra is a k-vector space with linear maps

m : A⊗ A → A,
ı : k → A,

called the multiplication and the unit respectively, such that the following diagrams commute

A⊗ k

'
��

id⊗ı
// A⊗ A

m
��

A
id

// A

k ⊗ A
ı⊗id

//

'
��

A⊗ A

m
��

A
id

// A

A⊗ A⊗ A
id⊗m

//

m⊗id
��

A⊗ A

m
��

A⊗ A m
// A

The commutativity of the third diagram is the usual associativity axiom. Define a linear
map σ : A⊗ A→ A⊗ A by a⊗ b 7→ b⊗ a. Then A is commutative if the diagram

A⊗ A
m

((

σ
��

A⊗ A m
// A

commutes.
Suppose A and B are algebras with multiplication mA and mB respectively. Then A⊗B

is an algebra with multiplication mA⊗B defined to be the composite

A⊗B ⊗ A⊗B
idA⊗σ⊗idB

// A⊗ A⊗B ⊗B
mA⊗mb

// A⊗B.

That is (a⊗ b)(a′ ⊗ b′) = (aa′ ⊗ bb′).
A coalgebra is a k vector space with linear maps

∆ : A −→ A⊗ A,

ε : A −→ k,

called the comultiplication and the counit respectively, such that the following diagrams
commute

A⊗ k A⊗ A
id⊗ε

oo

A

'

OO

A

∆

OO

id
oo

k ⊗ A A⊗ A
ε⊗id

oo

A

'

OO

A

∆

OO

id
oo

A⊗ A⊗ A A⊗ A
id⊗∆

oo

A⊗ A

∆⊗id

OO

A
∆

oo

∆

OO
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The commutativity of the third diagram is referred to as coassociativity. For a ∈ A we will
use Sweedler notation and write

∆(a) =
∑

a

a(1) ⊗ a(2).

Let σ be as before, a coalgebra is said to be cocommutative if the diagram

A⊗ A

A⊗ A

σ

OO

A

∆
hh

∆
oo

commutes.
Let A be an algebra. Identify (A⊗A)∗ with A∗ ⊗A∗. This induces a coalgebra structure

on A∗, namely

∆ : A∗ → A∗ ⊗ A∗,

ϕ 7→ (a⊗ a′ 7→ ϕ(aa′)).

Dually, for a coalgebra C the coproduct induces an algebra structure on C∗. Namely, if
ϕ, ψ ∈ C∗ then (ϕψ)(x) =

∑
x ϕ(x(1))ψ(x(2)), where x ∈ C.

Let C and D be coalgebras with coproduct ∆C and ∆D respectively. Then C ⊗ D is a
coalgebra with comultiplication ∆C⊗D defined to be the composite

C ⊗D
∆C⊗∆D

// C ⊗ C ⊗D ⊗D
idC⊗σ⊗idD

// C ⊗D ⊗ C ⊗D.

0.3. Convolution product. Suppose A is an algebra and C is a coalgebra. Identify A ⊗
C∗ with Homk(C,A). This induces a multiplication ∗, called convolution, on Homk(C,A).
Namely, for ϕ, ψ ∈ Homk(C,A)

(ϕ ∗ ψ)(x) =
∑

x

ϕ(x(1))ψ(x(2)).

The identity of this ring is given by ι ◦ ε.

0.4. Hopf algebras. A Hopf algebra is a k-vector space A that is both an algebra and
coalgebra such that

(i) the comultiplication ∆ and the counit ε are homomorphisms of algebras;
(ii) the multiplication m and the unit ı are homomorphisms of coalgebras;
(iii) A is equipped with a bijective k-module map S : A→ A, called the antipode, such

that the following diagrams commute

A⊗ A
S⊗id

// A⊗ A

m
��

A

∆

OO

ı◦ε
// A

A⊗ A
id⊗S

// A⊗ A

m
��

A

∆

OO

ı◦ε
// A

Proposition 0.1. The antipode is an algebra and coalgebra antiautomorphism, i.e. S(ab) =
S(b)S(a) and

∑
a S(a(2))⊗ S(a(1)) =

∑
S(a) S(a)(1) ⊗ S(a)(2) .
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Proof. Consider Hom(A⊗A,A) as an algebra under the convolution product. LetM,S ′, S ′′ ∈
Hom(A⊗ A,A) be the maps given by

M(a⊗ a′) = aa′, S ′(a⊗ a′) = S(a′)S(a) and S ′′(a⊗ a′) = S(aa′).

Then

M ∗ S ′(x⊗ y) =
∑
x⊗y

M((x⊗ y)(1))S
′((x⊗ y)(2))

=
∑
x,y

M(x(1) ⊗ y(1))S
′(x(2) ⊗ y(2))

=
∑
x,y

x(1)y(1)S(y(1))S(x(2))

= ε(x)ε(y).

Similarly

S ′′ ∗M(x⊗ y) =
∑
x⊗y

S ′′((x⊗ y)(1))M((x⊗ y)(2))

=
∑
x,y

S ′′(x(1) ⊗ y(1))M(x(2) ⊗ y(2))

=
∑
x,y

S(x(1)y(1))(x(2)y(2))

=
∑
xy

S((xy)(1))(xy)(2)

= ε(xy)

Now consider Hom(A,A⊗ A) as an algebra under convolution. Let

∆ ∗ S ′ =
∑

a

(a(1) ⊗ a(2))(S(a(4))⊗ S(a(3)))

=
∑

a

a(1)S(a(4))⊗ a(2)S(a(3))

=
∑

a

a(1)S(a(3))⊗ ε(a(2))

=
∑

a

a(1)S(ε(a(2))a(3))⊗ 1

=
∑

a

a(1)S(a(2))⊗ 1

= ε(a)⊗ 1.
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Similarly

S ′′ ∗∆ =
∑

a

∆(S(a(1)))∆(a(2))

=
∑

a

∆(S(a(1))a(2))

= ∆(ε(a))

= ε(a)⊗ 1

�

0.5. Some representation theory. Let A be a Hopf algebra throughout. We turn the
field k into an A-module via

a · 1 = ε(a), a ∈ A.
This is the trivial representation and by an abuse of notation is also denoted by k. The
adjoint representation of A on itself is given by

ad : A⊗ A→ A,

a⊗ a′ 7→
∑

a

a(1)a
′S(a(2)).

The regular representation of A on itself is given by the multiplication of A. Let V be an
A-module, then V ∗ is also an A-module via

a · f(v) = f(S(a)v), a ∈ A, v ∈ V, f ∈ V ∗.

Furthermore, given A-modules V and W , V ⊗W is also an A-module via

a · (v ⊗ w) =
∑

a

a(1)v ⊗ a(2)w, a ∈ A, v ∈ V,w ∈ W.

We also give Homk(U, V ) an A-module structure through the identification

V ⊗ U∗ ' Homk(U, V ) given by v ⊗ u∗ 7→ (f : u′ 7→ u∗(u′)v).

We note that it is implicit in this statement that for a module V , V ∗ will always be the
restricted dual of V (i.e. functions with finite dimensional support).

Warning. In general V ⊗ U∗ is not isomorphic to U∗ ⊗ V as an A-module.

Let M be an A module. The invariants of M are elements of the submodule

MA = {m ∈M | am = ε(a)m for all a ∈ A}.

Remark 0.2. Taking invariants is a left exact functor on the category of A-modules. Further,
this functor is representable, namely MA ' HomA(k,M).

Lemma 0.3. Let M,N be A-modules. Then

HomA(M,N) = Homk(M,N)A.
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Proof. Suppose ϕ ∈ HomA(M,N), then

(aϕ)(m) =
∑

a

a(1)ϕ(S(a(2))m)

=
∑

a

a(1)S(a(2))ϕ(m)

= ε(a)ϕ(m).

Conversely, suppose ϕ ∈ Homk(M,N)A and a ∈ A then

aϕ(m) =
∑

a

a(1)ε(a(2))ϕ(m)

=
∑

a

a(1)ϕ(ε(a(2))m)

=
∑

a

a(1)ϕ(S(a(2))a(3)m)

=
∑

a

(a(1)ϕ)(a(2)m)

=
∑

a

ε(a(1))ϕ(a(2)m)

=
∑

a

ϕ(ε(a(1))a(2)m)

= ϕ(am).

�

Write ExtA(M,−) for the right derived functors of HomA(M,−).

Corollary 0.4. Let M,N be A-modules, then there is a natural isomorphism

Exti
A(M,N) ' Exti

A(k,Homk(M,N))

Proof. We have the following isomorphism of functors

HomA(M,−) ' Homk(M,−)A ' HomA(k,Homk(M,−)).

Thus, the corresponding derived functors are isomorphic. �

0.6. An example: Group algebras. Let G be a finite group and let C[G] be its group
algebra over C. Then A = C[G] is a Hopf algebra with

∆(g) = g ⊗ g, S(g) = g−1 and ε(g) = 1, g ∈ G.
Set

Ω =
1

|G|
∑
g∈G

g.

The element Ω is a central in A. Furthermore, gΩ = Ωg = Ω for all g ∈ G. Thus, letting
k denote the trivial module, we have that ΩA ' k⊕|G|. Furthermore, as Ω is a central
idempotent, A ' ΩA ⊕ (1 − Ω)A. Hence, k is a projective module. Thus, if M is a finite
dimensional A-module, then Exti(k,M) = 0 for i > 0. Consequently, if M and N are finite
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dimensional A-modules then by Corollary 0.4 we have that Exti(M,N) = 0, i > 0. In
particular all finite dimensional A-modules are completely reducible.

Remark 0.5. The above arguments generalize to F[G], where |G| does not divide char F.
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