EQUIVARIANT PERVERSE SHEAVES

R. VIRK

Contents

1.	Notations and conventions	1
2.	Preliminaries on equivariant sheaves	1
References		3

1. NOTATIONS AND CONVENTIONS

1.1. A variety will always mean a separated scheme of finite type over \mathbb{C} . For a variety X, we write $D_c^b(X)$ for the bounded derived category of constructible complexes of sheaves (of k-vector spaces) with respect to the classical (= complex analytic) topology on X. We write $\mathcal{P}(X) \subset D_c^b(X)$ for the abelian category of perverse sheaves (middle perversity) on X. All operations on sheaves will be assumed to be derived. That is, we will write f_* instead of Rf_* , \otimes instead of \otimes^L and so on. A t-exact functor between derived categories of sheaves will always mean t-exact with respect to the perverse t-structure.

1.2. We denote by $\mathcal{D}^{\leq 0}(X)$ (resp. $\mathcal{D}^{\geq 0}$) the full subcategory of $\mathcal{D}_c^b(X)$ consisting of objects $K \in \mathcal{D}_c^b(X)$ such that there exists a stratification (depending on K), with strata $\{X_w\}_{w\in W}$, such that K is constructible with respect to this stratification, $H^j(i_w^*K) = 0$ for all $j > -\dim X_w$ and $H^j(i_w^!K) = 0$ resp. $j < -\dim X_w$, where $i_w \colon X_w \hookrightarrow X$ is the inclusion map. This is the perverse t-structure on $\mathcal{D}_c^b(X)$. In particular, $\mathcal{P}(X) = \mathcal{D}^{\leq 0}(X) \cap \mathcal{D}^{\geq 0}(X)$.

1.3. An algebraic group will always mean a smooth linear algebraic group over \mathbf{C} . A reductive group will always mean a connected smooth linear algebraic group over \mathbf{C} with trivial unipotent radical.

1.4. The shift functor in a triangulated category will be denoted by [1].

2. Preliminaries on equivariant sheaves

2.1. Let G be an algebraic group, X a variety on which G acts on the left. Let $m: G \times G \to G$ denote the multiplication and let $e: X \to G \times X, x \mapsto (1, x)$ be the identity section. Let $a: G \times X \to X$ denote the action map and write $p_2: G \times X \to X$ for the projection map. A *G*-equivariant complex is a pair (K, ϕ) with $K \in D_c^b(X)$ and ϕ an isomorphism

$$\phi \colon a^* K \xrightarrow{\sim} p_2^* K \tag{2.1.1}$$

satisfying the following conditions:

(i) Cocycle condition: the following holds over $G \times G \times X$

$$(m \times \mathrm{id}_X)^*(\phi) = p_{23}^*(\phi) \circ (\mathrm{id}_G \times a)^*(\phi),$$
 (2.1.2)

where $p_{23}: G \times G \times X \to G \times X$ is projection on the second and third factor.

(ii) Rigidity condition: $e^*(\phi) = id_K$.

2.2. Remark. Let ϕ be an isomorphism as in (2.1.1) not necessarily satisfying the cocycle or the rigidity conditions. Then ϕ can be modified to make it satisfy the rigidity condition. Namely, replace ϕ by $\phi \circ a^* e^*(\phi^{-1})$. As

$$e^*(\phi \circ a^* e^*(\phi^{-1})) = e^*(\phi) \circ (ae)^* e^*(\phi^{-1}) = e^*(\phi) \circ e^*(\phi^{-1}) = \mathrm{id}_K,$$

the isomorphism $\phi \circ a^* e^*(\phi^{-1}) \colon a^* K \xrightarrow{\sim} p_2^* K$ is rigid.

2.3. Morphisms of *G*-equivariant complexes are defined in the obvious way: let $(K_1, \phi_1), (K_2, \phi_2)$ be *G*-equivariant complexes. A morphism $\psi: (K_1, \phi_1) \to (K_2, \phi_2)$ is a morphism $\psi: K_1 \to K_2$ such that $\phi_2 \circ a^*(\psi) = p_2^*(\psi) \circ \phi_1$. Let $\mathcal{P}_G(X)$ denote the category of *G*-equivariant perverse sheaves on *X*. That is, an object of $\mathcal{P}_G(X)$ is a *G*-equivariant complex (K, ϕ) such that $K \in \mathcal{P}(X)$. Let

For:
$$\mathcal{P}_G(X) \to \mathcal{P}(X), \qquad (K, \phi) \mapsto K$$

denote the forgetful functor.

2.4. Lemma. Let X, Y be varieties and $f: Y \to X$ a smooth map of relative dimension d. Let $s: X \to Y$ be a section of f (i.e., $fs = id_X$). Then $s!f^* = s^*f^*[-2d]$.

Proof. Let \mathbf{D} denote Verdier duality. Then

$$\mathbf{D}s^*f^* = \mathbf{D} = s^*f^*\mathbf{D} = \mathbf{D}s^!f^! = \mathbf{D}s^!f^*[2d].$$

As **D** is an auto-equivalence this implies the result.

2.5. **Proposition** ([BBD, Prop. 4.2.5, Cor. 4.2.6.2]). If f is smooth of relative dimension d and the fibres of f are connected, then $f^*[d]$ is t-exact. Restricting $f^*[d]$ to $\mathcal{P}(X)$ gives a full and faithful functor $\mathcal{P}(X) \to \mathcal{P}(Y)$. The image of $\mathcal{P}(X)$ under $f^*[d]$ is an épaisse (= stable under subquotients) subcategory of $\mathcal{P}(Y)$.

2.6. **Proposition.** Let G be a connected algebraic group and X a variety on which G acts on the left. Then the forgetful functor $\mathcal{P}_G(X) \to \mathcal{P}(X)$ is full and faithful. Its essential image consists of perverse sheaves $K \in \mathcal{P}(X)$ such that $a^*K \simeq p_2^*K$.

Proof. Let us first prove the assertion about the essential image of For. Let $K \in \mathcal{P}(X)$ and suppose we have an isomorphism $\phi: a^*K \xrightarrow{\sim} p_2^*K$. Thanks to Remark 2.2 we may assume that ϕ satisfies the rigidity condition. So to prove our claim it suffices to show that ϕ satisfies the cocycle condition. Let $f: G \times G \times X \to X$ be the projection map and let $s: X \to G \times G \times X, x \mapsto (1, 1, x)$. Then s is a section of f. Hence, from Prop. 2.5 we infer that $s^*[-2\dim G]$ is full and faithful when restricted to $\mathcal{P}(X)$. Now

$$s^*(m \times \operatorname{id}_X)^*(\phi) = (m \times \operatorname{id}_X \circ s)^*(\phi) = e^*(\phi) = \operatorname{id}_K$$

and

$$s^{*}(p_{23}^{*}(\phi)) \circ (\mathrm{id}_{G} \times a)^{*}(\phi) = (p_{23} \circ s)^{*}(\phi) \circ (\mathrm{id}_{G} \times a \circ s)^{*}(\phi) = e^{*}(\phi) \circ e^{*}(\phi) = \mathrm{id}_{K}.$$

As $s^*[-2\dim G]$ is faithful on $\mathcal{P}(X)$ this implies the cocycle condition.

It is clear that For is a faithful functor. So all that remains to be seen is that For is full. Let $(K, \phi), (K', \phi') \in \mathcal{P}_G(X)$. We need to show that any morphism $\psi \colon K \to K'$ in $\mathcal{P}(X)$ intertwines ϕ with ϕ' . The argument is similar to the one above: the morphism e is a section of p_2 . Moreover, we have that

$$e^*(\phi' \circ a^*(\psi)) = \mathrm{id}_{K'} \circ \psi = \psi = \psi \circ \mathrm{id}_K = \psi \circ e^*(\phi) = e^*(p_2^*(\psi) \circ \phi).$$

Hence, as before, the claim follows from the fact that $e^*[-\dim G]$ is faithful on $\mathcal{P}(X)$.

2.7. In view of Prop. 2.6, if G is connected, we will identify $\mathcal{P}_G(X)$ with its essential image in $\mathcal{P}(X)$. That is, we will regard $\mathcal{P}_G(X)$ as a full subcategory of $\mathcal{P}(X)$ and speak of $K \in \mathcal{P}(X)$ as being G-equivariant whenever $a^*K \simeq p_2^*K$.

2.8. Proposition. Let G be a connected algebraic group. Then

- (i) $\mathcal{P}_G(X)$ is abelian. Kernels and cokernels in $\mathcal{P}_G(X)$ coincide with those in $\mathcal{P}(X)$;
- (ii) $\mathcal{P}_G(X)$ is an épaisse subcategory of $\mathcal{P}(X)$. That is, if $K \in \mathcal{P}_G(X)$, then every subquotient of K is also in $\mathcal{P}(X)$.

Proof. (i) follows from the fact that both $a^*[\dim G]$ and $p_2^*[\dim G]$ are t-exact (Prop. 2.5). To see (ii) argue as follows. Let $K \in \mathcal{P}_G(X)$ and let L be a subquotient of K. Using Prop. 2.5 we infer that there is some $M \in \mathcal{P}(X)$ such that $a^*L \simeq p_2^*M$. Applying e^* gives $L \simeq M$. Hence, $a^*L \simeq p_2^*M \simeq p_2^*L$.

2.9. **Proposition.** Let G be a connected algebraic group, $H \subseteq G$ a closed connected subgroup. If $K \in \mathcal{P}_G(G/H)$, then K is isomorphic to a constant perverse sheaf (*i.e.*, $K \simeq (G/H)^{\oplus n}[\dim (G/H)]$ for some $n \in \mathbb{Z}_{\geq 0}$).

Proof. Let $q: G \to G/H$ be the quotient map. Then q is smooth with connected fibres. Hence, by Prop. 2.5, $q^*[\dim H]: \mathcal{P}_G(G/H) \to \mathcal{P}(G)$ is t-exact, full and faithful. Further, as q is G-equivariant, the image of $\mathcal{P}_G(G/H)$ under $q^*[\dim H]$ lands in $\mathcal{P}_G(G)$. Thus, we are reduced to showing that a G-equivariant perverse sheaf on G is isomorphic to a constant perverse sheaf. Let $K \in \mathcal{P}_G(G)$, let $s: G \to G \times G$ be given by $g \mapsto (g, 1)$, let $\delta: \mathrm{pt} \hookrightarrow G$ be the inclusion of the identity element and let $c: G \to \mathrm{pt}$ be the obvious map. Then

$$K = (as)^* K = s^* a^* K \simeq s^* p_2^* K = (p_2 s)^* K = (\delta c)^* K = c^* \delta^* K.$$

References

- [BBD] A. A. BEILINSON, J. BERNSTEIN, P. DELIGNE, *Faisceaux pervers*, Analyse et topologie sur les espaces singulares, Astérisque 100 (1982), 1-171.
- [BL] J. BERNSTEIN, V. LUNTS, Equivariant sheaves and functors, Lecture Notes in Mathematics 1578, Springer-Verlag, Berlin (1994).
- [Bo] A. BOREL, LINEAR ALGEBRAIC GROUPS, Second edition, Graduate Texts in Mathematics 126, Springer-Verlag, New York (1991).
- [KaSc] M. KASHIWARA, P. SCHAPIRA, Categories and Sheaves, Grundlehren der mathematischen Wissenshaften 332, Springer-Verlag, Berlin (2006).
- [Se] J-P. SERRE, Espaces fibrés algébriques, Séminaire Bourbaki, Vol. 2, Exp. No. 82, 305-311, Soc. Math. France, Paris (1995).

Department of Mathematics, University of California, Davis, CA 95616 $E\text{-}mail\ address: \texttt{virk@math.ucdavis.edu}$