THE DEGENERATE AFFINE BRAID GROUP AND SCHUR-WEYL TYPE DUALITY

R. VIRK

1. The classical Lie algebras

Let V be an n-dimensional vector space. Let $\mathfrak{gl}_n=\mathfrak{gl}(V)$ denote the Lie algebra of $n\times n$ matrices acting on V. Let \mathfrak{t} denote the Lie subalgebra of \mathfrak{gl}_n consisting of diagonal matrices and let h_i be the matrix with 1 in the i^{th} diagonal entry and 0 elsewhere. Define elements ε_i , in the dual space \mathfrak{t}^* , by $\langle \varepsilon_i, h_j \rangle = \delta_{ij}$. The trace form $(\cdot|\cdot)$ on \mathfrak{gl}_n is given by $(x|y) = \operatorname{tr}(xy)$, where tr is the ordinary matrix trace. This form is symmetric, ad-invariant and non-degenerate.

Let \mathfrak{g} be one of the classical Lie algebras: \mathfrak{gl}_n , $\mathfrak{so}_{2n+1} \subset \mathfrak{gl}_{2n+1}$, $\mathfrak{sp}_{2n} \subset \mathfrak{gl}_{2n}$ or $\mathfrak{so}_{2n} \subset \mathfrak{gl}_{2n}$. For each of these Lie algebras \mathfrak{g} , let $\mathfrak{h} \subset \mathfrak{g}$ denote the Lie subalgebra consisting of matrices with non-zero entries only on the diagonal and let $\mathfrak{n} \subset \mathfrak{g}$ denote the Lie subalgebra consisting of matrices with non-zero entries only above the diagonal. Let \mathfrak{h}^* denote the dual space to \mathfrak{h} . The set of roots $R \subset \mathfrak{h}^*$ is the set of eigenvalues of \mathfrak{h} acting on \mathfrak{g} . The positive roots R^+ are the eigenvalues of \mathfrak{h} acting on \mathfrak{n} . We have

$$R^{+} = \begin{cases} \{\varepsilon_{i} - \varepsilon_{j} \mid 1 \leq i < j \leq n\}, & \text{for } \mathfrak{gl}_{n}, \\ \{\varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i < j \leq n\} \cup \{\varepsilon_{i} \mid 1 \leq i \leq n\}, & \text{for } \mathfrak{so}_{2n+1}, \\ \{\varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i < j \leq n\} \cup \{2\varepsilon_{i} \mid 1 \leq i \leq n\}, & \text{for } \mathfrak{sp}_{2n}, \\ \{\varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i < j \leq n\}, & \text{for } \mathfrak{so}_{2n}, \end{cases}$$

The trace form descends to an ad-invariant, non-degenerate form on g. Furthermore, its restriction to \mathfrak{h} is non-degenerate. This gives an isomorphism $\mathfrak{h} \stackrel{\sim}{\longrightarrow} \mathfrak{h}^*, h \mapsto (\cdot, h)$. Via this isomorphism we obtain a non-degenerate form, also denoted $(\cdot|\cdot)$, on \mathfrak{h}^* . The form on \mathfrak{h}^* given by $(\varepsilon_i|\varepsilon_j) = \delta_{ij}$.

For each $\alpha \in R$, the coroot $\alpha^{\vee} \in \mathfrak{h}$ is defined by $\langle \cdot, \alpha^{\vee} \rangle = \frac{2(\cdot | \alpha)}{(\alpha | \alpha)}$, where $\langle \cdot, \cdot \rangle$ is the evaluation pairing. For each $\alpha \in R$, let $s_{\alpha} \in GL(\mathfrak{h}^*)$ be the reflection $s_{\alpha}(\lambda) = \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha$. The Weyl group W_0 is the subgroup of $GL(\mathfrak{h}^*)$ generated by the reflections s_{α} , $\alpha \in R$. It is clear that $(\cdot|\cdot)$ is W_0 invariant.

Define $\rho \in \mathfrak{h}^*$ by

$$2\rho = \sum_{i=1}^{n} (y - 2i + 1)\varepsilon_i, \quad \text{where} \quad y = \begin{cases} 2n - 1, & \text{for } \mathfrak{gl}_n, \\ 2n, & \text{for } \mathfrak{so}_{2n+1}, \\ 2n + 1, & \text{for } \mathfrak{sp}_{2n}, \\ 2n - 1, & \text{for } \mathfrak{so}_{2n}. \end{cases}$$
(1.1)

The dot-action of W_0 on \mathfrak{h}^* is given by $w \cdot \lambda = w(\lambda + \rho) - \rho$, $w \in W_0$.

2 R. VIRK

The dominant integral weights P^+ are

$$\lambda = \lambda_{1}\varepsilon_{1} + \dots + \lambda_{n}\varepsilon_{n} \qquad \lambda_{1} \geq \lambda_{2} \geq \dots \geq \lambda_{n}, \qquad \text{for } \mathfrak{gl}_{n},$$

$$\lambda = \lambda_{1}\varepsilon_{1} + \dots + \lambda_{n}\varepsilon_{n}, \qquad \lambda_{1} \geq \lambda_{2} \geq \dots \geq \lambda_{n} \geq 0,$$

$$\lambda_{1}, \dots, \lambda_{n} \in \mathbb{Z}, \text{ or } \qquad \text{for } \mathfrak{so}_{2n+1},$$

$$\lambda_{1}, \dots, \lambda_{n} \in \frac{1}{2} + \mathbb{Z},$$

$$\lambda = \lambda_{1}\varepsilon_{1} + \dots + \lambda_{n}\varepsilon_{n}, \qquad \lambda_{1} \geq \lambda_{2} \geq \dots \geq \lambda_{n} \geq 0,$$

$$\lambda_{1}, \dots, \lambda_{n} \in \mathbb{Z}, \qquad \text{for } \mathfrak{sp}_{2n},$$

$$\lambda = \lambda_{1}\varepsilon_{1} + \dots + \lambda_{n}\varepsilon_{n}, \qquad \lambda_{1} \geq \lambda_{2} \geq \dots \geq \lambda_{n-1} \geq |\lambda_{n}| \geq 0,$$

$$\lambda_{1}, \dots, \lambda_{n} \in \mathbb{Z}, \text{ or } \qquad \text{for } \mathfrak{so}_{2n},$$

$$\lambda_{1}, \dots, \lambda_{n} \in \mathbb{Z}, \text{ or } \qquad \text{for } \mathfrak{so}_{2n},$$

$$\lambda_{1}, \dots, \lambda_{n} \in \mathbb{Z}, \text{ or } \qquad \text{for } \mathfrak{so}_{2n},$$

where $|\lambda| = \lambda_1 + \cdots + \lambda_n$.

2. Degenerate structures

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} . Let \mathfrak{Z} denote the center of $U(\mathfrak{g})$. Let $\{b_i\}_i, \{b^i\}_i$ be dual bases in \mathfrak{g} with respect to the trace form. The *Casimir* is

$$\kappa = \sum_{i} b_i b^i.$$

The Casimir is an element in \mathfrak{Z} . For a \mathfrak{g} -module M, we will write κ_M for the action of κ on M. Note that if M is a highest weight \mathfrak{g} -module of weight λ , then κ_M is multiplication by $(\lambda | \lambda + 2\rho)$.

Let Δ denote the coproduct on $U(\mathfrak{g})$. Then

$$\Delta(\kappa) = \kappa \otimes 1 + 1 \otimes \kappa + 2 \sum_{i} b_{i} \otimes b^{i}.$$

If $L(\mu)$ and $L(\nu)$ are finite dimensional, highest weight, simple modules of weight μ and ν respectively, then it follows that $2\sum_i b_i \otimes b^i$ acts on the $L(\lambda)$ isotypic component of $L(\mu) \otimes L(\nu)$ as multiplication by

$$(\lambda|\lambda+2\rho)-(\mu|\mu+2\rho)-(\nu|\nu+2\rho).$$

2.1. The degenerate affine braid group. The degenerate affine braid group $\partial \operatorname{Br}_k$ is the algebra over \mathfrak{Z} presented by generators $t_1, \ldots, t_{k-1}, e_1, \ldots, e_{k-1}$ and x_1, \ldots, x_k , subject to the

relations

$$t_i^2 = 1, (2.1)$$

$$t_i t_j = t_j t_i, \quad \text{if } |i - j| > 1,$$
 (2.2)

$$t_i t_{i+1} t_i = t_{i+1} t_i t_{i+1}, (2.3)$$

$$t_i e_j = e_j t_i, \qquad \text{if } |i - j| \neq 1, \tag{2.4}$$

$$t_{i+1}e_it_{i+1} = t_ie_{i+1}t_i, (2.5)$$

$$x_j t_i = t_i x_j, \quad \text{if } |i - j| > 1,$$
 (2.6)

$$x_{i+1}t_i = t_i x_i + e_i t_i, (2.7)$$

$$e_i e_j = e_j e_i, \quad \text{if } |i - j| > 1,$$
 (2.8)

$$e_i x_j = x_j e_i, \quad \text{if } |i - j| > 1,$$
 (2.9)

$$x_i x_j = x_j x_i. (2.10)$$

Let V and W be \mathfrak{g} -modules. Define

flip:
$$V \otimes W \to W \otimes V$$
,
 $v \otimes w \mapsto w \otimes v$.

The map flip is a \mathfrak{g} -module isomorphism $V \otimes W \xrightarrow{\sim} W \otimes V$.

Theorem 2.1.1. Let M, V be \mathfrak{g} -modules. Define

$$\partial \Phi : \partial \operatorname{Br}_{k} \to \operatorname{End}_{\mathfrak{g}}(M \otimes V^{\otimes k}),$$

$$t_{i} \mapsto \operatorname{id}_{M} \otimes \operatorname{id}_{V}^{\otimes i-1} \otimes \operatorname{flip} \otimes \operatorname{id}_{V}^{\otimes k-i-1},$$

$$x_{i} \mapsto \frac{1}{2} (\kappa_{M \otimes V^{\otimes i}} - \kappa_{M \otimes V^{\otimes i-1}} \otimes \operatorname{id}_{V} - \operatorname{id}_{M \otimes V^{\otimes i-1}} \otimes \kappa_{V}) \otimes \operatorname{id}_{V^{\otimes k-i}},$$

$$e_{i} \mapsto \operatorname{id}_{M} \otimes \operatorname{id}_{V^{\otimes i-1}} \otimes \frac{1}{2} (\kappa_{V \otimes V} - \kappa_{V} \otimes \operatorname{id}_{V} - \operatorname{id}_{V} \otimes \kappa_{V}) \otimes \operatorname{id}_{V^{\otimes k-i-1}}.$$

Then $\partial \Phi$ defines an action of $\partial \operatorname{Br}_k$ on $M \otimes V^{\otimes k}$.

Proof. The relations (2.1), (2.2), (2.3), (2.6), (2.8), (2.9) and (2.10) are clear. It suffices to prove (2.4) and (2.5) for k = 3. Let $m \in M$ and let $v, v', v'' \in V$. Then

$$\partial \Phi(e_1)(m \otimes v \otimes v' \otimes v'') = \sum_i m \otimes b_i v \otimes b^i v' \otimes v''$$

and

$$\partial \Phi(e_2)(m \otimes v \otimes v' \otimes v'') = \sum_i m \otimes v \otimes b_i v' \otimes b^i v'',$$

where $\{b_i\}_i$ and $\{b^i\}_i$ are dual bases of \mathfrak{g} with respect to $(\cdot|\cdot)$. It follows that

$$t_i e_j = e_j t_i,$$
 if $|i - j| \neq 1$,
 $t_{i+1} e_i t_{i+1} = t_i e_{i+1} t_i$.

4 R. VIRK

These imply (2.4) and (2.5) respectively. Finally, it is sufficient to prove (2.7) for k = 2. We have

$$\partial \Phi(x_2)(m \otimes v \otimes v') = \frac{1}{2}(\Delta^2(\kappa) - \Delta(\kappa) \otimes 1 - 1 \otimes 1 \otimes \kappa)(m \otimes v \otimes v')$$

$$= \frac{1}{2}(\Delta(\kappa \otimes 1 + 1 \otimes \kappa + 2\sum_i b_i \otimes b^i) - \Delta(\kappa) \otimes 1 - 1 \otimes 1 \otimes \kappa)(m \otimes v \otimes v')$$

$$= (\sum_i \Delta(b_i) \otimes b^i)(m \otimes v \otimes v')$$

$$= \sum_i (b_i m \otimes v \otimes b^i v' + m \otimes b_i v \otimes b^i v')$$

$$= \partial \Phi(t_1 x_1 t_1 + e_1)(m \otimes v \otimes v').$$

This gives (2.7).

Example 2.1.2. Consider the Lie algebra $\mathfrak{gl}_n = \mathfrak{gl}(V)$. The defining representation V is n-dimensional and isomorphic to $L(\varepsilon_1)$. In particular, $\kappa_V = (\varepsilon_1|\varepsilon_1 + 2\rho) = 2n - 1$.

Let M be a \mathfrak{gl}_n -module. Let $E_{ij} \in \mathfrak{gl}_n$ denote the elementary matrix with 1 in te (i,j)entry and 0 elsewhere. Then $\{E_{ij}\}_{i,j=1}^n$ and $\{E_{ji}\}_{i,j=1}^n$ are dual bases with respect to the
trace form. Let $v, v' \in V$, then

$$\sum_{i,j=1}^{n} E_{ij}v \otimes E_{ji}v' = v' \otimes v.$$

We deduce that the element $e_i \in \partial \operatorname{Br}_k$ acts on $M \otimes V^{\otimes k}$ the same as t_i . The resulting algebra is the *degenerate affine Hecke algebra*, denoted $\partial H_k^{\operatorname{aff}}$. It is presented by generators $t_1, \ldots, t_{k-1}, x_1, \ldots, x_k$, subject to the relations

$$t_i^2 = 1,$$
 $t_i t_j = t_j t_i,$ if $|i - j| > 1,$
 $t_i t_{i+1} t_i = t_{i+1} t_i t_{i+1},$
 $t_i x_j = x_j t_i,$ if $|i - j| > 1,$
 $x_{i+1} t_i = t_i x_i + 1,$
 $x_i x_j = x_j x_i.$

Let $\lambda \in P^+$, then

$$L(\lambda) \otimes L(\varepsilon_1) \simeq \bigoplus_{\lambda^+} L(\lambda^+),$$

where λ^+ runs through all weights $\mu \in P^+$ such that $\mu = \lambda + \varepsilon_i$ for some *i*. Thus, if $M = L(\lambda)$, $\lambda \in P^+$, then x_1 acts on the $L(\lambda + \varepsilon_i)$ isotypic component of $M \otimes V$ as multiplication by

$$\frac{1}{2}((\lambda + \varepsilon_i | \lambda + \varepsilon_i + 2\rho) - (\lambda | \lambda + 2\rho) - (\varepsilon_1 | \varepsilon_1 + 2\rho)) = \lambda_i - i + 1,$$

where $\lambda_i = (\lambda | \varepsilon_i)$.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WI 53706 E-mail address: virk@math.wisc.edu