
Cesàro Summability of Fourier Series

rv...

February 25, 2005

1 Preliminaries

Throughout this abstract we will use the following convention:

Dn(t) =
1

2
+

n∑
k=1

cos(kt) =

{
sin((n+ 1

2
)t)

2 sin( t
2
)

for t 6= 2mπ rational

n + 1/2 for t = 2mπ

i.e. Dn(t) is Dirichlet’s kernel.

Furthermore we will let L(I) denote the set of Lebesgue-integrable functions
on an interval I.

Theorem 1.1. For every real x 6= 2mπ (m is an integer), we have

n∑
k=1

eikx = eix 1− einx

1− eix

and that
n∑

k=0

sin((2k + 1)x) =
sin2(nx)

sin(x)

Proof. (1− eix)
∑n

k=1 eikx =
∑n

k=1(e
ikx− ei(k+1)x) = eix− ei(n+1)x. This gives

us the first identity, the second one is obtained by comparing the real and
imaginary parts of the first on.

Theorem 1.2. Assume that f ∈ L([0, 2π]) and suppose that f is periodic
with period 2π. Let {sn} denote the sequence of partial sums of the Fourier
series generated by f say

sn(x) =
a0

2
+

n∑
k=1

(ak cos(kx) + bk sin(kx))
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Then we have the integral representation

sn(x) =
2

π

∫ π

0

f(x + t) + f(x− t)

2
Dn(t) dt

Proof. Substituting the integral representation of the Fourier coefficients in
the formula for sn(x) we have that

sn(x) =
1

π

∫ 2π

0

f(t)

{
1

2
+

n∑
k=1

(cos(kt) cos(kx) + sin(kt)(kx)

}
dt

=
1

π

∫ 2π

0

f(t)

{
1

2
+

n∑
k=1

cos(k(t− x))

}
dt =

1

π

∫ 2π

0

f(t)Dn(t− x) dt

Since both f and Dn are periodic with period 2π, we can replace the interval
of integration by [x− π, x + π] and then make a translation by u = t− x to
get

sn(x) =
1

π

∫ 2π

0

f(t)Dn(t− x) dt

=
1

π

∫ π

−π

f(x + u)Dn(u) du

Using the fact that Dn(−u) = Dn(u) we get the required formula.

2 Cesàro Summability of Fourier Series

Continuity of a function is usually not strong enough to say anything conclu-
sively about the convergence of its Fourier series. In 1873, Du Bois Reymond
gave an example of a function, continuous throughout the interval [0, 2π],
whose Fourier series fails to converge on an uncountable subset of the same
interval. On the other hand , continuity does suffice to establish what is
called Cesàro summability of the series. The main theorem here is due to
Fejér.

Theorem 2.1. Assume that f ∈ L([0, 2π]) and suppose that f is periodic
with period 2π. Let sn denote the nth partial sum of the Fourier series gen-
erated by f and let

σn(x) =
s0(x) + s1(x) + . . . + sn−1(x)

n

Then we have the integral representation

σn(x) =
1

nπ

∫ π

0

f(x + t) + f(x− t)

2

sin2
(

nt
2

)
sin2

(
t
2

) dt
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Proof. The result is obtained immediately by using the integral representa-
tion for sn(x) obtained in Theorem 1.2 and using the second identity from
Theorem 1.1

NOTE. If we apply the above theorem to the constant function whose
value is 1 at each point we find σn(x) = sn(x) = 1 for each n and hence we
get that

σn(x)− s =
1

nπ

∫ π

0

{
f(x + t) + f(x− t)

2
− s

}
sin2

(
nt
2

)
sin2

(
t
2

) dt

If we could choose the value of s such that the integral on the right tends to
0 as n →∞, it will follow that σn(x) → s as n →∞. The next result shows
us that it suffices to take s = [f(x+) + f(x−)]/2.

Theorem 2.2 (Fejér). Assume that f ∈ L([0, 2π)] and suppose that f is
periodic with period 2π. Define a function s by

s(x) = lim
t→0+

f(x + t) + f(x− t)

2

whenever the limit exists. Then for each x for which s(x) is defined, the
Fourier series generated by f is Cesàro summable. That is we have

lim
n→∞

σn(x) = s(x)

where {σn} is the sequence of arithmetic means defined earlier. If in addition,
f is continuous on [0, 2π], then the sequence {σn} converges uniformly to f
on [0, 2π].

Proof. Let gx(t) = [f(x + t) + f(x − t)]/2 − s(x), whenever s(x) is defined.
Then gx(t) → 0 as t → 0+. Therefore given any ε > 0 there is a 0 < δ < π
such that |gx(t)| < ε/2 whenever 0 < t < δ. Note that δ depends on x
as well as on ε. However, if f is continuous on [0, 2π], then f is uniformly
continuous on the same and there exists a δ which serves equally well for all x
on the same interval. Now we use the integral representation obtained in the
previous theorem and divide the interval of integration into two subintervals
[0, δ] abd [δ, π. On [0, δ] we have∣∣∣∣∣ 1

nπ

∫ δ

0

gx(t)
sin2

(
nt
2

)
sin2

(
t
2

) dt

∣∣∣∣∣ ≤ ε

2nπ

∫ π

0

sin2
(

nt
2

)
sin2

(
t
2

) dt =
ε

2

On [δ, π] we have that∣∣∣∣∣ 1

nπ

∫ π

δ

gx(t)
sin2

(
nt
2

)
sin2

(
t
2

) dt

∣∣∣∣∣ ≤ 1

nπ sin2(δ/2)

∫ π

δ

|gx(t)| dt ≤ I(x)

nπ sin2(δ/2)

3



where I(x) =
∫ π

0
|gx(t)| dt. Now we can choose n large enough so that the

expression on the right is smaller than ε/2. Thus there exists a N such that
for n > N

|σn(x)− s(x)| < ε|

In other words, σn(x) → s(x) as n →∞.
Now if f is continuous then it is bounded on [0, 2π] and we can replace I(x)
by a constant. The resulting N is then independent of xgiving us uniform
convergence.

3 Consequences

Theorem 3.1. Let f be continuous on [0, 2π] and periodic with period 2π.
Let {sn} be as before, and let an, bn be the Fourier coefficients of f . Then
we have:

a) l.i.m.n→∞ = f on [0, 2π].

b) 1
π

∫ 2π

0
|f(x)|2 dx =

a2
0

2
+

∑∞
n=1(a

2
n + b2

n) (Parseval’s formula)

c) The Fourier series for f can be integrated term by term, the integrated
series being uniformly convergent, even if the original Fourier series diverges.

d) If the Fourier series of f converges for some x, then it converges to f(x).

Proof. Part (a) follows by the theorem on best approximation in the mean.
(b) follows from (a) and Parseval’s inequality. (c) follows from (a) using the
Cauchy-Schwarz inequality for integrals. (d) is trivial.

Theorem 3.2. Let f be a real valued and continuous on [a, b]. Then for
every ε > 0 there is a polynomial p (which may depend on ε) such that

|f(x)− p(x| < ε for every x ∈ [a, b]

Proof. First define a new function g that is a parametrization of f that
changes the domain to [0, 2π] and has period 2π. Then use Fejér’s theorem
to approximate the function using finite Fourier sums. Each term of this
finite sum is a trigonometric function which is analytic and can thus be
approximated by polynomials, thus we obtain a polynomial p that suitably
approximates g, now parametrise p to obtain the appropriate approximation
for f .
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