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1 Categories

A category C consists of a collection of objects Ob(C); and for any two objects A, B € Ob(C) a set
Hom(A, B) called the set of morphisms of A into B; and for any three objects A, B,C € Ob(C)
a law of composition (i.e. a map)

Hom(B,C) x Hom(A, B) — Hom(A, C)
satisfying the following axioms

1. Two set Hom(A, B) and Hom(A’, B’) are disjoint unles A = A" and B = B’ in which case
they are equal.

2. For each object A of C there is a morphism id4 € Hom(A, A) which acts as left and right
identity for the elements of Hom(B, A) and Hom(A, B) respectively, for all objects B in
C.

3. The law of composition is associative (when defined), i.e. given f € Hom(A, B),g €
Hom(B,C),h € Hom(C, D) then

(hog)of=ho(gof)
for all objects A, B,C, D of C.

A morphism f : A — B is called an isomorphism if there exists a morphism g : B — A
such that fog = idp and go f = idg. If A = B we also say that the isomorphism is an
automorphism. A morphism of an object A into itself is called an endomorphism. For an
object A in C we denote by Aut(A) the set of automorphisms of A, and by End(A) the set of
endomorphisms of A.

Let G be a group and let C be a category and A € Ob(C). By an operation of G on A we
shall mean a homomorphism

¢ : G — Aut(A).

An operation of a group G on an object A is also called a representation of G on A.



2 Universal Objects

Let C be a category. An object U of C is called universally attracting if there exists a unique
morphism of each object of C into U, and is called universally repelling if for every object of
C there exists a unique morphism of U into that object. Since a universal object admits the
identity morphism into itself, it is clear that if U and U’ are two universal objects in C, then
there exists a unique isomorphism between them.

3 Products and Coproducts

Let C be a category and let A, B be objects of C. By a product of A, B in C one means a triple
(P, f,g) consisting of an object P in C and two morphisms f, g

P

A B

satisfying the following condition. Given two morphisms
p:C— A and v:C— B

in C, there exists a unique morphism h : C — P which makes the following diagram commu-
tative

C

A B

More generally, given a family of objects {A;}icr in C, a product for this family consists of
{P,{fi}icr} where P is an object in C and {f;}ics is a family of morphisms

fi P — Ai,
satisfying the following condition; given a family of morphisms
gi: C— Ai7

there exists a unique morphism h : C' — P such that f; o h = g; for all 4.

Let A, B be objects of a category C. We note that the product of A, B is universal in the
category whose objects consist of pairs of morphisms f : ¢ — A and g : C — B in C, and
whose morphisms are described as follows. Let f/: ¢/ — A and ¢’ : C" — B be another pair,



then a morphism from the first pair to the second is a morphism h : C' — C” in C, making the
following diagram commutative

C

A

The situation is similar for the product of a family {A;}icr.

Example. Let C be the category of sets and let {A;};c; be a family of sets. Let A = [[,.; 4;
be their Cartesian product and let p; : A — A; be the projection on the ith factor. Then
(A, {P;}icr) satisfy the requirements of a product in the category of sets.

Example. Let {G;}icr be a family of groups, and let G = [[ G; be their direct product. Let
p; : G — G be the projection homomorphism. Then these constitute a product of the family
in the category of groups.

Let {A;}icr be a family of objects in a category C. By their coproduct one means a pair
{S,{fi}icr} consisting of an object S and a family of morphisms

fi:Ai—>S7

satisfying the following property. Given a family of morphisms {g; : A; — C'} there exists a
unique morphism h : S — C such that ho f; = g; for all i. The coproduct of a family {4;} will
also be denoted by [[ A; and similarly the coproduct of two objects A, B will also be denoted
by A][ B. The coproduct of A and B is universal in the category of families maps from A and
B into a single object.

Example. Let S be the category of sets. Then coproducts exist in this category. Let S and S’
be sets. Let T be a set having the same cardinality as S’ and disjoint from S. Let f; : S — S
be the identity, and fo : S” — T be a bijection. Let U be the union of S and T'. Then (U, f1, f2)
is a coproduct for S and S’.

Example. Let ¢Sy be the category of pointed sets. Its objects consist of pairs (S, x) where S
is a set and x an element of S. A morphism of (S,z) into (S’,2’) in this category is a map
g:S — 8 such that g(x) = 2’. The coproduct in this category can be constructed as follows.
Let T be a set with the same cardinality as S” and such that TN S = {z}. Let U = SUT, and
let

fl : (S,x) - (U,x)

be the map which induces the identity on S. Let
f2 : (S,’xl) - (Ua I)

be the map sending 2’ to z and inducing a bijection of S” — {2’} on T'— {z}. Then the triple
(U, f1, f2) is a coproduct for (S,z) and (S’,2') in Sp.



4 Fiber products, coproducts, pull-backs and push-outs

Let C be a category. Let Z be an object of C. Then we have a new category of objects over Z,
denoted by Cz. The objects of Cz are morphisms:

f:X—Z in C.

A morphism from f to g:Y — Z in Cz is merely a morphism h : X — Y in C which makes
the following diagram commute

4
N

Z

A product in Cy is called the fiber product of f and ¢ in C and is denoted by f Xz g, together
with its natural morphisms of X,Y over Z, which are sometimes not denoted by anything , but
which we denote by p; and po.

XXZY

p1 D2

7N
A

VA

Example. Fiber products exist in the category of abelian groups. The fibered product of two
homomorphisms f: X — Z and g : Y — Z is the subgroup of X X Y consisting of all pairs

(z,y) such that f(z) = g(y).

In the fiber product diagram, one calls p1, the pull-back of g by f, and po the pull-back of f
by g. The fiber product satisfies the following universal property: Given any object 1" in C and
morphisms making the following diagram commutative

T

7N\
NS



there exists a unique morphism 7' — X X z Y making the following diagram commutative

T

XXZY

a8

Dually we have the notion of coproduct in the category of morphisms f : 7 — X with a
fixed object Z as the object of departure of the morphisms. This category is denoted by CZ.
We reverse the arrows in the preceding discussion. Given two objects f and g : Z — Y in
C? we have their coproduct X || 7 Y with morphisms ¢; and g2 making the following diagram

commutative
x[[v
Z

1 q2

SN
N A

VA

satisfying the dual universal property of the fiber product. We call it the fibered coproduct. We
call ¢; the push-out of f by f, and go the push-out of f by g.

Example. Fibered coproducts exist in the category of abelian groups. The coproduct of two
homomorphisms f: Z — X and g : Z — Y is the factor group X @ Y /W where W is the
subgroup of X @Y consisting of all elements (f(z), —g(z)) with z € Z.

5 Functors

Let C,D be categories. A covariant functor F of C into D is a rule which to each object X in
C asssociates an object F'(X) in D, and to each morphism f : X — Y associates a morphism
F(f): F(X) — F(Y) such that:

1. For all X in C we have F(idx) = idp(x)-
2. If f: X — Y and g: Y — Z are two morphisms of C then

F(go f)=F(g) o F(f).



We also have the notion of a contravariant functor that has essentially the same definition
but ‘reverses all arrows’, i.e. to each morphism f : X — Y the contravariant functor associates
a morphism

F(f): F(B) — F(A)
going in the opposite direction, such that if f: X — Y and g : Y — Z are morphisms in C,

then
F(go f)=F(f)oF(g).

Example. To each group G associate its set (stripped of the group structure) to obtain a
covariant functor from the category of groups into the category of sets, provided we associate
with each group homomorphism itself, viewed only as a set theoretic map. Such a functor is
called a stripping functor or forgetful functor.

Example. Consider the category of abelian groups. Fix an abelian group G. The association
X —— Hom(X,G) is a contravariant functor from this category to itself. The association
X — Hom(G, X) is a covariant functor from the category to itself.

Example. Let C be a category and G a fixed object in C. Let Mg(X) = Hom(G, X) for any
object X of C. If ¢ : X — X' is a morphism, let

Mg(¢) : Hom(G,X) — Hom(G,X'),
g — ¥°g
for any g € Hom(G, X). So Mg is a covariant functor from C to the category of sets.

Similarly, for each object Y of C we have a contravariant functor M from C to the category
of sets given by M (Y) = Hom(Y,G). Mg and M€ are called representation functors.

Let C,D be two categories. The functors of C into D (say covariant, and in one variable)
may be viewed as objects of a category, whose morphisms (called natural transformations) are
given as follows. Let F, G be two such functors. A natural transformation H : I — G is a rule
which to each object X of C associates a morphism

Hx : F(X) — G(X)
such that for any morphism f : X — Y the following diagram commutes

Fx) XL 6(x)

We therefore have the notion of isomorphisms of functors. A functor is representable if it is
isomorphic to a representation functor.

6 Adjoint functors

If F:C — Dand G : D — C are functors, then we say that F' is a left adjoint for G

~Y

(equivalently G is a right adjoint for F) if there is a natural isomorphism « : Home(—, G(—)) &



Homp(F(—),—). That is, for every pair of objects X of C and Y of D there is a bijection
ay,y : Home(X, G(Y) = Homp(F(X),Y) such that for every morphism of objects ¢ : X — X'
inCand ¢ : Y — Y’ in D the following diagram commutes:

Home (X, G(Y)) axy Homp(F(X),Y)

(0, G(¥)) (F (), 1)
Home(X', G(Y))axy Homp(F(X'),Y")

Suppose F' and F’ are left adjoints to G: D — C. For X in C let ¢ : F(X) — F'(X) be
the image of idp/(x) under the adjointness isomorphisms

Hom(F(X), F'(X)) = Hom(X, GF'(X)) = Hom(F'(X), F'(X)).

Define ¢ : F'(X) — F(X) similarly. It can be verified that ¢ and 1 are natural isomorphisms.
Thus, any two left adjoints of G are naturally isomorphic, the same reasoning gives us that any
two right adjoints of G are also naturally isomorphic.

Example. Let A be a commutative ring and let be any A-module. The functor N — M ®4 N
from A-mod to itself is the left adjoint of the functor N —— Hom4 (M, N).

Example. Let U be the functor that takes a Lie algebra to its universal enveloping algebra
and let L be the functor that takes an associative algebra to its Lie algebra. Then U is the left
adjoint to L.

If F:C— D is a left adjoint to G : D — C, then for each object Y of D we have that
Home (F(G(Y)), Y) 2 Homp (G(Y), G(Y)).

Let ey : F(G(Y)) — Y be the image of the identity morphism G(Y) — G(Y), then ep is
called the counit, and similarly for each object X of C we get a morphism nx : X — G(F (X))
called the wunit of the adjoint pair. The adjointness isomorphism « may be recovered from e
and 7. Given a map ¢ : F(X) — Y G(p) o nx gives us the corresponding map X — G(Y).
Similarly, given a map ¢ : X — G(Y") the corresponding map F(X) — Y is given by eo F'(1)).

7 Direct and Inverse Limits

Let I be a set of indices with a partial ordering. We say that [ is directed if given i, j € I there
exists k € I such that ¢ < k and j < k. Let I = {i} be a directed system of indices. Let C be
a category and {X;} a family of objects in C. For each pair 4,j such that i < j assume given a
morphism '
fi+Xi — X

such that whenever i < j <k ‘ ' '

flofi=f
and ff = id. Such a family is called a directed family of morphisms. A direct limit for the family
f; is a universal object in the following category. The objects consist of pairs (X, (f*)) where



X € Ob(C) and (f?) is a family of morphisms f? : X; — X, such that for all i < j the following
diagram commutes

X;

f! I
b'e

Thus if (X, (f?)) is the direct limit and if (X', (¢*)) is any object in the above category, then
there exists a unique morphism ¢ : X — X’ making the following diagram commute

X, J; .
g’ X g’

X/

X;

For simplicity we write A = hL>nAl Reversing the arrows we define inverse limits. Given a
directed set I and a family of objects X;. If j > ¢ we are now given a morphism fg X — X
satisfying fi o f]z, = f,g and f! =1id, if j > i > k. We now deine a category of objects (X, (f;))
with f; : X — X such that the following diagram commutes

X
fi fi
X; - - X;
f;

A universal object in this category is called an inverse limit and we say

—
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