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1 Categories

A category C consists of a collection of objects Ob(C); and for any two objects A,B ∈ Ob(C) a set
Hom(A,B) called the set of morphisms of A into B; and for any three objects A,B,C ∈ Ob(C)
a law of composition (i.e. a map)

Hom(B,C)×Hom(A,B) −→ Hom(A,C)

satisfying the following axioms

1. Two set Hom(A,B) and Hom(A′, B′) are disjoint unles A = A′ and B = B′ in which case
they are equal.

2. For each object A of C there is a morphism idA ∈ Hom(A,A) which acts as left and right
identity for the elements of Hom(B,A) and Hom(A,B) respectively, for all objects B in
C.

3. The law of composition is associative (when defined), i.e. given f ∈ Hom(A,B), g ∈
Hom(B,C), h ∈ Hom(C,D) then

(h ◦ g) ◦ f = h ◦ (g ◦ f)

for all objects A,B,C,D of C.

A morphism f : A −→ B is called an isomorphism if there exists a morphism g : B −→ A
such that f ◦ g = idB and g ◦ f = idA. If A = B we also say that the isomorphism is an
automorphism. A morphism of an object A into itself is called an endomorphism. For an
object A in C we denote by Aut(A) the set of automorphisms of A, and by End(A) the set of
endomorphisms of A.

Let G be a group and let C be a category and A ∈ Ob(C). By an operation of G on A we
shall mean a homomorphism

ϕ : G −→ Aut(A).

An operation of a group G on an object A is also called a representation of G on A.
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2 Universal Objects

Let C be a category. An object U of C is called universally attracting if there exists a unique
morphism of each object of C into U , and is called universally repelling if for every object of
C there exists a unique morphism of U into that object. Since a universal object admits the
identity morphism into itself, it is clear that if U and U ′ are two universal objects in C, then
there exists a unique isomorphism between them.

3 Products and Coproducts

Let C be a category and let A,B be objects of C. By a product of A,B in C one means a triple
(P, f, g) consisting of an object P in C and two morphisms f, g

P

A

f

�
B

g

-

satisfying the following condition. Given two morphisms

ϕ : C −→ A and ψ : C −→ B

in C, there exists a unique morphism h : C −→ P which makes the following diagram commu-
tative

C

P

h

?

A

ϕ

�

f

�
B

ψ

-

g
-

More generally, given a family of objects {Ai}i∈I in C, a product for this family consists of
{P, {fi}i∈I} where P is an object in C and {fi}i∈I is a family of morphisms

fi : P −→ Ai,

satisfying the following condition; given a family of morphisms

gi : C −→ Ai,

there exists a unique morphism h : C −→ P such that fi ◦ h = gi for all i.
Let A,B be objects of a category C. We note that the product of A,B is universal in the

category whose objects consist of pairs of morphisms f : C −→ A and g : C −→ B in C, and
whose morphisms are described as follows. Let f ′ : C ′ −→ A and g′ : C ′ −→ B be another pair,
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then a morphism from the first pair to the second is a morphism h : C −→ C ′ in C, making the
following diagram commutative

C

C ′

h

?

A

f

�

f ′

�
B

g

-

g′

-

The situation is similar for the product of a family {Ai}i∈I .

Example. Let C be the category of sets and let {Ai}i∈I be a family of sets. Let A =
∏

i∈I Ai

be their Cartesian product and let pi : A −→ Ai be the projection on the ith factor. Then
(A, {Pi}i∈I) satisfy the requirements of a product in the category of sets.

Example. Let {Gi}i∈I be a family of groups, and let G =
∏
Gi be their direct product. Let

pi : G −→ Gi be the projection homomorphism. Then these constitute a product of the family
in the category of groups.

Let {Ai}i∈I be a family of objects in a category C. By their coproduct one means a pair
{S, {fi}i∈I} consisting of an object S and a family of morphisms

fi : Ai −→ S,

satisfying the following property. Given a family of morphisms {gi : Ai −→ C} there exists a
unique morphism h : S −→ C such that h ◦ fi = gi for all i. The coproduct of a family {Ai} will
also be denoted by

∐
Ai and similarly the coproduct of two objects A,B will also be denoted

by A
∐
B. The coproduct of A and B is universal in the category of families maps from A and

B into a single object.

Example. Let S be the category of sets. Then coproducts exist in this category. Let S and S′

be sets. Let T be a set having the same cardinality as S′ and disjoint from S. Let f1 : S −→ S
be the identity, and f2 : S′ −→ T be a bijection. Let U be the union of S and T . Then (U, f1, f2)
is a coproduct for S and S′.

Example. Let cS0 be the category of pointed sets. Its objects consist of pairs (S, x) where S
is a set and x an element of S. A morphism of (S, x) into (S′, x′) in this category is a map
g : S −→ S′ such that g(x) = x′. The coproduct in this category can be constructed as follows.
Let T be a set with the same cardinality as S′ and such that T ∩ S = {x}. Let U = S ∪ T , and
let

f1 : (S, x) −→ (U, x)

be the map which induces the identity on S. Let

f2 : (S′, x′) −→ (U, x)

be the map sending x′ to x and inducing a bijection of S′ − {x′} on T − {x}. Then the triple
(U, f1, f2) is a coproduct for (S, x) and (S′, x′) in S0.
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4 Fiber products, coproducts, pull-backs and push-outs

Let C be a category. Let Z be an object of C. Then we have a new category of objects over Z,
denoted by CZ . The objects of CZ are morphisms:

f : X −→ Z in C.

A morphism from f to g : Y −→ Z in CZ is merely a morphism h : X −→ Y in C which makes
the following diagram commute

X
h

- Y

Z

g

�

f
-

A product in CZ is called the fiber product of f and g in C and is denoted by f ×Z g, together
with its natural morphisms of X,Y over Z, which are sometimes not denoted by anything , but
which we denote by p1 and p2.

X ×Z Y

X

p1

�
Y

p2

-

Z

g

�

f
-

Example. Fiber products exist in the category of abelian groups. The fibered product of two
homomorphisms f : X −→ Z and g : Y −→ Z is the subgroup of X × Y consisting of all pairs
(x, y) such that f(x) = g(y).

In the fiber product diagram, one calls p1, the pull-back of g by f , and p2 the pull-back of f
by g. The fiber product satisfies the following universal property: Given any object T in C and
morphisms making the following diagram commutative

T

X
�

Y

-

Z

g

�

f
-
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there exists a unique morphism T −→ X ×Z Y making the following diagram commutative

T

X ×Z Y
?

X
��

Y
--

Dually we have the notion of coproduct in the category of morphisms f : Z −→ X with a
fixed object Z as the object of departure of the morphisms. This category is denoted by CZ .
We reverse the arrows in the preceding discussion. Given two objects f and g : Z −→ Y in
CZ we have their coproduct X

∐
Z Y with morphisms q1 and q2 making the following diagram

commutative
X

∐
Z

Y

X

q1

�
Y

q2

-

Z

g

�

f
-

satisfying the dual universal property of the fiber product. We call it the fibered coproduct. We
call q1 the push-out of f by f , and q2 the push-out of f by g.

Example. Fibered coproducts exist in the category of abelian groups. The coproduct of two
homomorphisms f : Z −→ X and g : Z −→ Y is the factor group X ⊕ Y /W where W is the
subgroup of X ⊕ Y consisting of all elements (f(x),−g(z)) with z ∈ Z.

5 Functors

Let C,D be categories. A covariant functor F of C into D is a rule which to each object X in
C asssociates an object F (X) in D, and to each morphism f : X −→ Y associates a morphism
F (f) : F (X) −→ F (Y ) such that:

1. For all X in C we have F (idX) = idF (X).

2. If f : X −→ Y and g : Y −→ Z are two morphisms of C then

F (g ◦ f) = F (g) ◦ F (f).
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We also have the notion of a contravariant functor that has essentially the same definition
but ‘reverses all arrows’, i.e. to each morphism f : X −→ Y the contravariant functor associates
a morphism

F (f) : F (B) −→ F (A)

going in the opposite direction, such that if f : X −→ Y and g : Y −→ Z are morphisms in C,
then

F (g ◦ f) = F (f) ◦ F (g).

Example. To each group G associate its set (stripped of the group structure) to obtain a
covariant functor from the category of groups into the category of sets, provided we associate
with each group homomorphism itself, viewed only as a set theoretic map. Such a functor is
called a stripping functor or forgetful functor.

Example. Consider the category of abelian groups. Fix an abelian group G. The association
X 7−→ Hom(X,G) is a contravariant functor from this category to itself. The association
X 7−→ Hom(G,X) is a covariant functor from the category to itself.

Example. Let C be a category and G a fixed object in C. Let MG(X) = Hom(G,X) for any
object X of C. If ϕ : X −→ X ′ is a morphism, let

MG(ϕ) : Hom(G,X) −→ Hom(G,X ′),
g 7−→ ϕ ◦ g

for any g ∈ Hom(G,X). So MG is a covariant functor from C to the category of sets.
Similarly, for each object Y of C we have a contravariant functor MG from C to the category

of sets given by MG(Y ) = Hom(Y,G). MG and MG are called representation functors.

Let C,D be two categories. The functors of C into D (say covariant, and in one variable)
may be viewed as objects of a category, whose morphisms (called natural transformations) are
given as follows. Let F,G be two such functors. A natural transformation H : F −→ G is a rule
which to each object X of C associates a morphism

HX : F (X) −→ G(X)

such that for any morphism f : X −→ Y the following diagram commutes

F (X)
HX- G(X)

F (Y )

F (f)

?

HY

- G(Y )

G(f)

?

We therefore have the notion of isomorphisms of functors. A functor is representable if it is
isomorphic to a representation functor.

6 Adjoint functors

If F : C −→ D and G : D −→ C are functors, then we say that F is a left adjoint for G
(equivalently G is a right adjoint for F ) if there is a natural isomorphism α : HomC(−, G(−)) ∼=
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HomD(F (−),−). That is, for every pair of objects X of C and Y of D there is a bijection
αX,Y : HomC(X,G(Y ) ∼= HomD(F (X), Y ) such that for every morphism of objects ϕ : X −→ X ′

in C and ψ : Y −→ Y ′ in D the following diagram commutes:

HomC(X,G(Y ))
-

αX,Y� HomD(F (X), Y )

HomC(X ′, G(Y ))

(ϕ,G(ψ))

? -
αX′,Y ′
� HomD(F (X ′), Y ′)

(F (ϕ), ψ)

?

Suppose F and F ′ are left adjoints to G : D −→ C. For X in C let ϕ : F (X) −→ F ′(X) be
the image of idF ′(X) under the adjointness isomorphisms

Hom(F (X), F ′(X)) ∼= Hom(X,GF ′(X)) ∼= Hom(F ′(X), F ′(X)).

Define ψ : F ′(X) −→ F (X) similarly. It can be verified that ϕ and ψ are natural isomorphisms.
Thus, any two left adjoints of G are naturally isomorphic, the same reasoning gives us that any
two right adjoints of G are also naturally isomorphic.

Example. Let A be a commutative ring and let be any A-module. The functor N 7−→M ⊗AN
from A-mod to itself is the left adjoint of the functor N 7−→ HomA(M,N).

Example. Let U be the functor that takes a Lie algebra to its universal enveloping algebra
and let L be the functor that takes an associative algebra to its Lie algebra. Then U is the left
adjoint to L.

If F : C −→ D is a left adjoint to G : D −→ C, then for each object Y of D we have that

HomC(F (G(Y )), Y ) ∼= HomD(G(Y ), G(Y )).

Let εY : F (G(Y )) −→ Y be the image of the identity morphism G(Y ) −→ G(Y ), then εB is
called the counit, and similarly for each object X of C we get a morphism ηX : X −→ G(F (X))
called the unit of the adjoint pair. The adjointness isomorphism α may be recovered from ε
and η. Given a map ϕ : F (X) −→ Y G(ϕ) ◦ ηX gives us the corresponding map X −→ G(Y ).
Similarly, given a map ψ : X −→ G(Y ) the corresponding map F (X) −→ Y is given by ε◦F (ψ).

7 Direct and Inverse Limits

Let I be a set of indices with a partial ordering. We say that I is directed if given i, j ∈ I there
exists k ∈ I such that i ≤ k and j ≤ k. Let I = {i} be a directed system of indices. Let C be
a category and {Xi} a family of objects in C. For each pair i, j such that i ≤ j assume given a
morphism

f i
j : Xi −→ Xj

such that whenever i ≤ j ≤ k
f j

k ◦ f
i
j = f i

k

and f i
i = id. Such a family is called a directed family of morphisms. A direct limit for the family

f i
j is a universal object in the following category. The objects consist of pairs (X, (f i)) where
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X ∈ Ob(C) and (f i) is a family of morphisms f i : Xi −→ X, such that for all i ≤ j the following
diagram commutes

Xi
�

f i
j

Xj

X

f j

�

f i

-

Thus if (X, (f i)) is the direct limit and if (X ′, (gi)) is any object in the above category, then
there exists a unique morphism ϕ : X −→ X ′ making the following diagram commute

Xi

f i
j - Xj

X

f j

�

f i

-

X ′

ϕ

?

gj
�

gi
-

For simplicity we write A = lim−→Ai. Reversing the arrows we define inverse limits. Given a
directed set I and a family of objects Xi. If j ≥ i we are now given a morphism f j

i : Xj −→ Xi

satisfying f i
k ◦ f

j
k = f j

k and f i
i = id, if j ≥ i ≥ k. We now deine a category of objects (X, (fi))

with fi : X −→ Xi such that the following diagram commutes

X

Xj
f j

i

-

fj

�
Xi

fi

-

A universal object in this category is called an inverse limit and we say

X = lim←−Xi.
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