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0.1. Reminder on semisimple Lie Algebras. We will work with an algebraically closed
field of characteristic 0 which may as well be assumed to be C.

Let g be a finite dimensional semisimple Lie algebra. Fix a Borel subalgebra b ⊂ g and
an opposite Borel subalgebra b−. The intersection b ∩ b− is a Cartan subalgebra, denoted
h. Let n = [b, b] and n− = [b−, b−], then h ' b/n. That is, it is convenient for us to think
of h as a quotient of b, rather than a subalgebr.

The Lie algebra g acts on itself by derivations adx, where adx(y) = [x, y], for x, y ∈ g. The
representation given by x 7→ adx is called the adjoint representation. With respect to the
adjoint action of h, we have the so called triangular decomposition

g = n− ⊕ h⊕ n.

The non-zero eigenvalues of h acting on g are by definition the roots of g, and we will denote
the set of roots by R. Similarly, the eigenvalues of h acting on n are by definition the positive
roots of g, and we will denote this set by R+. For α ∈ R ∪ {0}, we will denote by gα the
corresponding eigenspace.

Theorem 0.1.1. [Dix, 1.10.2]

(i) dim(gα) = 1 for all α ∈ R.
(ii) If α, β ∈ R, then [gα, gβ] ⊆ gα+β.
(iii) If α ∈ R, then −α ∈ R, and hα = [gα, g−α] is a one dimensional subspace of h; it

contains a unique element Hα such that α(Hα) = 2.
(iv) Let α ∈ R. If Eα ∈ gα − {0}, then there exists a unique element E−α ∈ g−α such

that [Eα, E−α] = Hα, where Hα is as above.
(v) The elements of R generate h∗.

A Lie algebra is not an algebra, in the sense that it is not associative. Instead of working
with g, it is frequently convenient to work with the universal enveloping algebra U(g) of g.
This is the associative algebra (with 1) generated by g and relations xy − yx = [x, y] for all
x, y ∈ g.

Theorem 0.1.2 (Poincaré-Birkhoff-Witt, [Dix]). Let (x1, x2, . . . xr) be any ordered basis of
g. Then the elements xm1

1 xm2
2 · · ·xmr

r , m ∈ Z≥0, form a basis of U(g).

A basis of U(g) of the type in the above theorem will be referred to simply as a PBW
basis. It follows that

U(g) ' U(n−)⊗ U(h)⊗ U(n),

and that U(g) is a Noetherian integral domain. Pick a PBW basis and for each basis element
xm1

1 xm2
2 · · ·xmr

r , set deg(xm1
1 xm2

2 · · ·xmr
r ) =

∑
i mi. Set

U(g)i = C-span{x | deg(x) ≤ i},
1



then the filtration
C = U(g)0 ⊂ U(g)1 ⊂ U(g)2 ⊂ · · ·

is independent of the choice of the original basis. This filtration will be referred to as the
PBW filtration.

U(g) is a cocommutative Hopf algebra with comultiplication ∆, antipode S and counit ε
given by

∆(g) = g ⊗ 1 + 1⊗ g, S(g) = −g, ε(g) = 0, for all g ∈ g.

Via the comultiplication, the adjoint action of g on itself induces a unique action on U(g),
i.e.

x · y = xy − yx, for all x ∈ g and y ∈ U(g).

(On the right hand side of the above equality we are using the identification of g with U(g)1).
We will abuse both language and notation by referring to this action as the adjoint action,
and writing [x, y] for x ∈ g acting on y ∈ U(g).

The root lattice Q is the subgroup of h∗ given by the set of eigenvalues of h acting on U(g),
i.e.

Q = Z-span{α |α ∈ R+}.
We also set

Q+ = {
∑

i

miαi |mi ∈ Z≥0, αi ∈ R+},

(i.e. the set of eigenvalues of h acting on U(n)). For λ, µ ∈ h∗ we shall say that λ ≥ µ if
λ− µ ∈ Q+.

By construction, the category of modules over U(g) (as an associative algebra) is equivalent
to the category of g-modules. This category will be denoted g-mod.

0.2. The BGG category O. The category O is the full subcategory of g-mod, consisting
of modules M , satisfying:

(i) The action of n on M is locally finite, i.e. for every v ∈ M , the subspace U(n)·v ⊂ M
is finite-dimensional.

(ii) M is finitely generated as a g-module.
(iii) The action of h on M is locally finite and semisimple.

If 0 → M1 → M2 → M3 → 0 is exact in g-mod, and any two of the modules Mi satisfy
(i) and (ii), then so does the third module. On the other hand, suppose M2 satisfies (iii),
since U(h) is commutative, every finite dimensional U(h)-module is completely reducible,
consequently M1 and M3 also satisfy (iii). However, if M1 and M3 satisfy (iii), it is not
neccesarily true that M2 also satisfies (iii).

Let Oτ be the subcategory of g-mod consisting of objects satisfying the same axioms as O
except with n replaced by n−. Via the Cartan involution τ , the category Oτ is equivalent to
O. Occasionally it is also convenient to work in the subcategory O of g-mod that consists
of objects satisfying (ii) and (iii). It is clear that both O and Oτ are subcategories of O and
that all categories in question are abelian.

Let M ∈ g-mod, and let λ ∈ h∗. A vector v ∈ M is called a weight vector of weight λ if
hv = λ(h)v for all h ∈ h, i.e. v is a simultaneous eigenvector for all elements of h. The λ
weight space of M is defined as

Mλ = {v ∈ M |hv = λ(h)v, for all h ∈ h}.
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Proposition 0.2.1. If M ∈ O then all weight spaces of M are finite dimensional.

Proof. As h acts semisimply on M and the latter is finitely generated, we may assume
that M is generated by a finite set of weight vectors. By the PBW theorem we have that
U(g) = U(n−) ⊗ U(h) ⊗ U(n). Applying U(n) to a weight vector of say, weight λ, we get a
finite dimensional vector space V spanned by weight vectors having weights of the form (λ
+ sum of positive roots). The vector space V is stable under h, while the action of U(n−)
on V produces only weights lower than these. Furthermore, only a finite number of elements
(standard basis monomials yi1

1 · · · yim
m ) in U(n−) can yield the same weight when applied to

a weight vector in V . �

Let λ ∈ h∗. The Verma module M(λ) ∈ g-mod is defined by the following universal
property. For any object M ∈ g-mod,

Homg(M(λ), M) = Homb(Cλ, M),

where Cλ is the 1-dimensional b-module, on which b acts through the character

b −→ b/n
λ−→C.

By construction, M(λ) ' U(g)⊗U(b) Cλ. From the PBW theorem it is clear that 1⊗ 1 freely
generates M(λ) over n−; i.e. the action of n− on 1⊗1 defines an isomorphism (of n-modules)
U(n−) ' M(λ). We will write v+

λ for the image of 1⊗ 1 in M(λ).

Lemma 0.2.2. Verma modules belong to the category O.

Proof. We only need to check that n acts locally finitely on M(λ). Let x ∈ gα, then x ·
M(λ)µ ⊆ M(λ)µ+α. Thus, if we let U(g)i be the i-th term of the PBW filtration on U(g).
It suffices to check that the finite dimensional subspace U(g)i · v+

λ ⊂ M(λ) is n-stable. For
u ∈ U(g)i and x ∈ g we have:

x · (u · v+
λ ) = u · (x · v+

λ ) + [x, u] · v+
λ ,

where the first term is 0 if x ∈ n. Hence, our assertion follows from the fact that [g, U(g)i] ⊆
U(g)i. �

Let V be a g-module. A nonzero vector v+
λ in V is called a highest weight vector of weight

λ ∈ h∗ if h · v+
λ = λ(h)v+ for h ∈ h and n · v+

λ = 0. Furthermore we say that V is a highest
weight module if V = U(g) · v+

λ . By definition, Verma modules are highest weight modules.
It is a formal consequence of the definitions that

Proposition 0.2.3. If V (λ) is a highest weight module of weight λ then V (λ) is a quotient
of M(λ).

Corollary 0.2.4. Highest weight modules are in category O.

Lemma 0.2.5. A Verma module M(λ) with highest weight vector v+
λ contains a unique

maximal submodule and thus admits a unique simple quotient. Furthermore, M(λ) is inde-
composable.

Proof. Let S be the sum of all proper submodules of M(λ). As no proper submodule of
M(λ) contains the M(λ)λ weight space, it is straightforward to check that their sum S does
not contain this weight space, i.e.v+

λ 6∈ S. Thus, S 6= M(λ) and S is the required unique
maximal submodule of M(λ). Furthermore, M(λ) cannot be the direct sum of two proper
submodules, since each of these is contained in S. �
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Proposition 0.2.6. Suppose M is a non-zero module in O. Then M has a finite filtration

0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mn = M

such that Mi+1/Mi is a highest weight module.

Proof. Observe that V = U(n)M is finite dimensional. We proceed by induction on dim(V ).
If dim(V ) = 1 then M itself is a highest weight module. So assume the statement is true
for dim(V ) < n. Choose v ∈ V such that the weight of v is maximal amongst all weights in
V . Let M1 = U(g)v, then M = M/M1 is in O. Furthermore, dim(V ) < dim(V ), so we may
apply the inductive hypothesis to M to obtain the desired filtration. �

Corollary 0.2.7. Every simple module in O is isomorphic to a module L(λ) with λ ∈ h∗

and is therefore determined uniquely up to isomorphism by its highest weight.

References

[BGG] I. N. Bernstein, I. M. Gelfand, S. I. Gelfand, A category of g-modules, Funct. Anal. Appl. 10
(1976), 87-92.
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