THE BGG CATEGORY \mathcal{O}

R. VIRK

0.1. Reminder on semisimple Lie Algebras. We will work with an algebraically closed field of characteristic 0 which may as well be assumed to be \mathbb{C} .

Let \mathfrak{g} be a finite dimensional semisimple Lie algebra. Fix a Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$ and an opposite Borel subalgebra \mathfrak{b}^- . The intersection $\mathfrak{b} \cap \mathfrak{b}^-$ is a Cartan subalgebra, denoted \mathfrak{h} . Let $\mathfrak{n} = [\mathfrak{b}, \mathfrak{b}]$ and $\mathfrak{n}^- = [\mathfrak{b}^-, \mathfrak{b}^-]$, then $\mathfrak{h} \simeq \mathfrak{b}/\mathfrak{n}$. That is, it is convenient for us to think of \mathfrak{h} as a quotient of \mathfrak{b} , rather than a subalgebr.

The Lie algebra \mathfrak{g} acts on itself by derivations ad_x , where $\mathrm{ad}_x(y) = [x, y]$, for $x, y \in \mathfrak{g}$. The representation given by $x \mapsto \mathrm{ad}_x$ is called the *adjoint representation*. With respect to the adjoint action of \mathfrak{h} , we have the so called *triangular decomposition*

$$\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}.$$

The non-zero eigenvalues of \mathfrak{h} acting on \mathfrak{g} are by definition the *roots* of \mathfrak{g} , and we will denote the set of roots by R. Similarly, the eigenvalues of \mathfrak{h} acting on \mathfrak{n} are by definition the *positive* roots of \mathfrak{g} , and we will denote this set by R^+ . For $\alpha \in R \cup \{0\}$, we will denote by \mathfrak{g}_{α} the corresponding eigenspace.

Theorem 0.1.1. [Dix, 1.10.2]

- (i) $\dim(\mathfrak{g}_{\alpha}) = 1$ for all $\alpha \in R$.
- (ii) If $\alpha, \beta \in R$, then $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \subseteq \mathfrak{g}_{\alpha+\beta}$.
- (iii) If α ∈ R, then −α ∈ R, and 𝔥_α = [𝔅_α, 𝔅_{−α}] is a one dimensional subspace of 𝔥; it contains a unique element H_α such that α(H_α) = 2.
- (iv) Let $\alpha \in R$. If $E_{\alpha} \in \mathfrak{g}_{\alpha} \{0\}$, then there exists a unique element $E_{-\alpha} \in \mathfrak{g}_{-\alpha}$ such that $[E_{\alpha}, E_{-\alpha}] = H_{\alpha}$, where H_{α} is as above.
- (v) The elements of R generate \mathfrak{h}^* .

A Lie algebra is not an algebra, in the sense that it is not associative. Instead of working with \mathfrak{g} , it is frequently convenient to work with the *universal enveloping algebra* $U(\mathfrak{g})$ of \mathfrak{g} . This is the associative algebra (with 1) generated by \mathfrak{g} and relations xy - yx = [x, y] for all $x, y \in \mathfrak{g}$.

Theorem 0.1.2 (Poincaré-Birkhoff-Witt, [Dix]). Let $(x_1, x_2, \ldots x_r)$ be any ordered basis of \mathfrak{g} . Then the elements $x_1^{m_1} x_2^{m_2} \cdots x_r^{m_r}$, $m \in \mathbb{Z}_{\geq 0}$, form a basis of $U(\mathfrak{g})$.

A basis of $U(\mathfrak{g})$ of the type in the above theorem will be referred to simply as a PBW basis. It follows that

$$U(\mathfrak{g}) \simeq U(\mathfrak{n}^{-}) \otimes U(\mathfrak{h}) \otimes U(\mathfrak{n}),$$

and that $U(\mathfrak{g})$ is a Noetherian integral domain. Pick a PBW basis and for each basis element $x_1^{m_1}x_2^{m_2}\cdots x_r^{m_r}$, set $\deg(x_1^{m_1}x_2^{m_2}\cdots x_r^{m_r}) = \sum_i m_i$. Set

$$U(\mathfrak{g})_i = \mathbb{C}\operatorname{-span}_1 \{ x \mid \deg(x) \le i \},\$$

then the filtration

$$\mathbb{C} = U(\mathfrak{g})_0 \subset U(\mathfrak{g})_1 \subset U(\mathfrak{g})_2 \subset \cdots$$

is independent of the choice of the original basis. This filtration will be referred to as the PBW filtration.

 $U(\mathfrak{g})$ is a cocommutative Hopf algebra with comultiplication Δ , antipode S and counit ε given by

$$\Delta(g) = g \otimes 1 + 1 \otimes g, \qquad S(g) = -g, \qquad \varepsilon(g) = 0, \qquad \text{for all } g \in \mathfrak{g}.$$

Via the comultiplication, the adjoint action of \mathfrak{g} on itself induces a unique action on $U(\mathfrak{g})$, i.e.

$$x \cdot y = xy - yx$$
, for all $x \in \mathfrak{g}$ and $y \in U(\mathfrak{g})$.

(On the right hand side of the above equality we are using the identification of \mathfrak{g} with $U(\mathfrak{g})_1$). We will abuse both language and notation by referring to this action as the adjoint action, and writing [x, y] for $x \in \mathfrak{g}$ acting on $y \in U(\mathfrak{g})$.

The *root lattice* Q is the subgroup of \mathfrak{h}^* given by the set of eigenvalues of \mathfrak{h} acting on $U(\mathfrak{g})$, i.e.

$$Q = \mathbb{Z}\operatorname{-span}\{\alpha \mid \alpha \in R^+\}$$

We also set

$$Q^+ = \{\sum_i m_i \alpha_i \mid m_i \in \mathbb{Z}_{\geq 0}, \alpha_i \in R^+\},\$$

(i.e. the set of eigenvalues of \mathfrak{h} acting on $U(\mathfrak{n})$). For $\lambda, \mu \in \mathfrak{h}^*$ we shall say that $\lambda \geq \mu$ if $\lambda - \mu \in Q^+$.

By construction, the category of modules over $U(\mathfrak{g})$ (as an associative algebra) is equivalent to the category of \mathfrak{g} -modules. This category will be denoted \mathfrak{g} -mod.

0.2. The BGG category \mathcal{O} . The *category* \mathcal{O} is the full subcategory of \mathfrak{g} -mod, consisting of modules M, satisfying:

- (i) The action of \mathfrak{n} on M is locally finite, i.e. for every $v \in M$, the subspace $U(\mathfrak{n}) \cdot v \subset M$ is finite-dimensional.
- (ii) M is finitely generated as a \mathfrak{g} -module.
- (iii) The action of \mathfrak{h} on M is locally finite and semisimple.

If $0 \to M_1 \to M_2 \to M_3 \to 0$ is exact in \mathfrak{g} -mod, and any two of the modules M_i satisfy (i) and (ii), then so does the third module. On the other hand, suppose M_2 satisfies (iii), since $U(\mathfrak{h})$ is commutative, every finite dimensional $U(\mathfrak{h})$ -module is completely reducible, consequently M_1 and M_3 also satisfy (iii). However, if M_1 and M_3 satisfy (iii), it is not neccessarily true that M_2 also satisfies (iii).

Let \mathcal{O}^{τ} be the subcategory of \mathfrak{g} -mod consisting of objects satisfying the same axioms as \mathcal{O} except with \mathfrak{n} replaced by \mathfrak{n}^- . Via the Cartan involution τ , the category \mathcal{O}^{τ} is equivalent to \mathcal{O} . Occasionally it is also convenient to work in the subcategory $\overline{\mathcal{O}}$ of \mathfrak{g} -mod that consists of objects satisfying (ii) and (iii). It is clear that both \mathcal{O} and \mathcal{O}^{τ} are subcategories of $\overline{\mathcal{O}}$ and that all categories in question are abelian.

Let $M \in \mathfrak{g}$ -mod, and let $\lambda \in \mathfrak{h}^*$. A vector $v \in M$ is called a *weight vector* of weight λ if $hv = \lambda(h)v$ for all $h \in \mathfrak{h}$, i.e. v is a simultaneous eigenvector for all elements of \mathfrak{h} . The λ weight space of M is defined as

$$M_{\lambda} = \{ v \in M \mid hv = \lambda(h)v, \text{ for all } h \in \mathfrak{h} \}.$$

Proposition 0.2.1. If $M \in \mathcal{O}$ then all weight spaces of M are finite dimensional.

Proof. As \mathfrak{h} acts semisimply on M and the latter is finitely generated, we may assume that M is generated by a finite set of weight vectors. By the PBW theorem we have that $U(\mathfrak{g}) = U(\mathfrak{n}^-) \otimes U(\mathfrak{h}) \otimes U(\mathfrak{n})$. Applying $U(\mathfrak{n})$ to a weight vector of say, weight λ , we get a finite dimensional vector space V spanned by weight vectors having weights of the form (λ + sum of positive roots). The vector space V is stable under \mathfrak{h} , while the action of $U(\mathfrak{n}^-)$ on V produces only weights lower than these. Furthermore, only a finite number of elements (standard basis monomials $y_1^{i_1} \cdots y_m^{i_m}$) in $U(\mathfrak{n}^-)$ can yield the same weight when applied to a weight vector in V.

Let $\lambda \in \mathfrak{h}^*$. The Verma module $M(\lambda) \in \mathfrak{g}$ -mod is defined by the following universal property. For any object $M \in \mathfrak{g}$ -mod,

$$\operatorname{Hom}_{\mathfrak{g}}(M(\lambda), M) = \operatorname{Hom}_{\mathfrak{b}}(\mathbb{C}_{\lambda}, M),$$

where \mathbb{C}_{λ} is the 1-dimensional b-module, on which b acts through the character

$$\mathfrak{b} \longrightarrow \mathfrak{b}/\mathfrak{n} \xrightarrow{\lambda} \mathbb{C}.$$

By construction, $M(\lambda) \simeq U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$. From the PBW theorem it is clear that $1 \otimes 1$ freely generates $M(\lambda)$ over \mathfrak{n}^- ; i.e. the action of \mathfrak{n}^- on $1 \otimes 1$ defines an isomorphism (of \mathfrak{n} -modules) $U(\mathfrak{n}^-) \simeq M(\lambda)$. We will write v_{λ}^+ for the image of $1 \otimes 1$ in $M(\lambda)$.

Lemma 0.2.2. Verma modules belong to the category \mathcal{O} .

Proof. We only need to check that \mathfrak{n} acts locally finitely on $M(\lambda)$. Let $x \in \mathfrak{g}_{\alpha}$, then $x \cdot M(\lambda)_{\mu} \subseteq M(\lambda)_{\mu+\alpha}$. Thus, if we let $U(\mathfrak{g})_i$ be the *i*-th term of the PBW filtration on $U(\mathfrak{g})$. It suffices to check that the finite dimensional subspace $U(\mathfrak{g})_i \cdot v_{\lambda}^+ \subset M(\lambda)$ is \mathfrak{n} -stable. For $u \in U(\mathfrak{g})_i$ and $x \in \mathfrak{g}$ we have:

$$x \cdot (u \cdot v_{\lambda}^{+}) = u \cdot (x \cdot v_{\lambda}^{+}) + [x, u] \cdot v_{\lambda}^{+},$$

where the first term is 0 if $x \in \mathfrak{n}$. Hence, our assertion follows from the fact that $[\mathfrak{g}, U(\mathfrak{g})_i] \subseteq U(\mathfrak{g})_i$.

Let V be a \mathfrak{g} -module. A nonzero vector v_{λ}^+ in V is called a *highest weight vector* of weight $\lambda \in \mathfrak{h}^*$ if $h \cdot v_{\lambda}^+ = \lambda(h)v^+$ for $h \in \mathfrak{h}$ and $\mathfrak{n} \cdot v_{\lambda}^+ = 0$. Furthermore we say that V is a *highest weight module* if $V = U(\mathfrak{g}) \cdot v_{\lambda}^+$. By definition, Verma modules are highest weight modules. It is a formal consequence of the definitions that

Proposition 0.2.3. If $V(\lambda)$ is a highest weight module of weight λ then $V(\lambda)$ is a quotient of $M(\lambda)$.

Corollary 0.2.4. Highest weight modules are in category \mathcal{O} .

Lemma 0.2.5. A Verma module $M(\lambda)$ with highest weight vector v_{λ}^+ contains a unique maximal submodule and thus admits a unique simple quotient. Furthermore, $M(\lambda)$ is indecomposable.

Proof. Let S be the sum of all proper submodules of $M(\lambda)$. As no proper submodule of $M(\lambda)$ contains the $M(\lambda)_{\lambda}$ weight space, it is straightforward to check that their sum S does not contain this weight space, i.e. $v_{\lambda}^+ \notin S$. Thus, $S \neq M(\lambda)$ and S is the required unique maximal submodule of $M(\lambda)$. Furthermore, $M(\lambda)$ cannot be the direct sum of two proper submodules, since each of these is contained in S.

Proposition 0.2.6. Suppose M is a non-zero module in \mathcal{O} . Then M has a finite filtration

$$0 \subset M_1 \subset M_2 \subset \cdots \subset M_n = M$$

such that M_{i+1}/M_i is a highest weight module.

Proof. Observe that $V = U(\mathfrak{n})M$ is finite dimensional. We proceed by induction on $\dim(V)$. If $\dim(V) = 1$ then M itself is a highest weight module. So assume the statement is true for $\dim(V) < n$. Choose $v \in V$ such that the weight of v is maximal amongst all weights in V. Let $M_1 = U(\mathfrak{g})v$, then $\overline{M} = M/M_1$ is in \mathcal{O} . Furthermore, $\dim(\overline{V}) < \dim(V)$, so we may apply the inductive hypothesis to \overline{M} to obtain the desired filtration. \Box

Corollary 0.2.7. Every simple module in \mathcal{O} is isomorphic to a module $L(\lambda)$ with $\lambda \in \mathfrak{h}^*$ and is therefore determined uniquely up to isomorphism by its highest weight.

References

- [BGG] I. N. BERNSTEIN, I. M. GELFAND, S. I. GELFAND, A category of g-modules, Funct. Anal. Appl. 10 (1976), 87-92.
- [Bou] N. BOURBAKI, Groupes et Algèbres de Lie, Chapitres 4, 5 et 6, Elements de Mathèmatiques, Hermann, Paris (1968).
- [Dix] J. DIXMIER, Enveloping Algebras, Graduate Studies in Mathematics 11, American Mathematical Society, Providence, RI (1996).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WI 53706 *E-mail address*: virk@math.wisc.edu