ADJOINT FUNCTORS

R. VIRK

For simplicity, we will assume all categories to be *concrete* categories, i.e., objects have an underlying set structure and morphisms are completely determined by their effect on the underlying sets.

Let \mathcal{C} and \mathcal{D} be categories and let $F : \mathcal{C} \to \mathcal{D}$ and $F^{\vee} : \mathcal{D} \to \mathcal{C}$ be functors. We say that F is *left adjoint* to F^{\vee} (or F^{\vee} is *right adjoint* to F) and that (F, F^{\vee}) form an adjoint pair if there is a map of sets

$$\alpha: \operatorname{Hom}_{\mathcal{D}}(F(X), Y) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{C}}(X, F^{\vee}(Y))$$

that is functorial in X and Y, $X \in \mathcal{C}, Y \in \mathcal{D}$.

Substituting Y = F(X) we obtain a map

$$\eta_X := \alpha(\mathrm{id}_{F(X)}) : X \to F^{\vee}F(X).$$

Substituting $X = F^{\vee}(Y)$ we obtain a map

$$\varepsilon_Y := \alpha^{-1}(\mathrm{id}_{F^\vee(Y)}) : FF^\vee(Y) \to Y.$$

The families $\{\eta_X\}$ and $\{\varepsilon_Y\}$ define natural transformations

$$\eta : \mathrm{id}_C \to F^{\vee}F, \qquad \varepsilon : FF^{\vee} \to \mathrm{id}_D$$

called the *counit* and *unit*, respectively. Both maps are also called the *adjunction maps*.

Let $f : F(X) \to Y$ be a map in \mathcal{D} , then by functoriality the following diagram commutes:

where f_* and $(F^{\vee}f)_*$ are the induced maps on Hom. In particular

$$\alpha(f) = \alpha(f \circ \mathrm{id}_{F(X)}) = F^{\vee}(f) \circ \alpha(\mathrm{id}_{F(X)}) = F^{\vee}(f) \circ \eta_X.$$

Similarly, given a map $g: X \to F^{\vee}(Y)$ in \mathcal{D} , then

$$\alpha^{-1}(g) = \alpha^{-1}(\mathrm{id}_{F^{\vee}(Y)} \circ g) = \alpha^{-1}(\mathrm{id}_{F^{\vee}(Y)} \circ F(g) = \varepsilon_Y \circ F(g).$$

It follows that the compositions

(0.1)
$$F(X) \xrightarrow{F(\eta_X)} FF^{\vee}F(X) \xrightarrow{\varepsilon_{F(X)}} F(X)$$

R. VIRK

and

(0.2)
$$F^{\vee}(Y) \xrightarrow{\eta_{F^{\vee}(Y)}} F^{\vee}FF^{\vee}(Y) \xrightarrow{F^{\vee}(\varepsilon_Y)} F^{\vee}(Y)$$

are the maps $id_{F(X)}$ and $id_{F^{\vee}(Y)}$ respectively.

The existence of of adjunction maps is equivalent to (F, F^{\vee}) being an adjoint pair. Namely, let $F : \mathcal{C} \to \mathcal{D}$ and $F^{\vee} : \mathcal{D} \to \mathcal{C}$ be functors with the additional data of natural transformations $\eta : \mathrm{id}_{\mathcal{C}} \to F^{\vee}F$ and $\varepsilon : FF^{\vee} \to \mathrm{id}_{\mathcal{D}}$ that satisfy (0.1) and (0.2). Then (F, F^{\vee}) is an adjoint pair. The isomorphism α is given by $\alpha(f) = F^{\vee}(f) \circ \eta_X$ and the inverse α^{-1} is given by $\alpha^{-1}(g) = \varepsilon_Y \circ F(g)$.

Let (F, F^{\vee}) and (G, G^{\vee}) be adjoint pairs with units η , $\overline{\eta}$ respectively and counits ε , $\overline{\varepsilon}$ respectively. Let $\varphi \in \operatorname{Hom}(F, G)$. Then, we define $\varphi^{\vee} : G^{\vee} \to F^{\vee}$ as the composition

$$\varphi^{\vee}:\ G^{\vee}(Y) \xrightarrow{\eta_{G^{\vee}(Y)}} F^{\vee}FG^{\vee}(Y) \xrightarrow{F^{\vee}(\varphi_{G^{\vee}(Y)})} F^{\vee}GG^{\vee}(Y) \xrightarrow{F^{\vee}(\overline{\varepsilon}_Y)} F^{\vee}(Y),$$

 $Y \in \mathcal{D}$. This is the unique map making the following diagram commutative, for any $X \in \mathcal{C}$ and $Y \in \mathcal{D}$:

Using the construction of φ^{\vee} it follows that if a functor has a left/right adjoint then this adjoint is unique up to isomorphism.

The following gives useful criteria for showing exactness of functors.

Lemma 0.0.1. Let \mathcal{C} be an abelian category, then a sequence $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ is exact in \mathcal{C} , provided that for every $X \in \mathcal{C}$ the following sequence is exact:

$$\operatorname{Hom}_{\mathcal{C}}(X,A) \xrightarrow{\alpha_*} \operatorname{Hom}_{\mathcal{C}}(X,B) \xrightarrow{\beta_*} \operatorname{Hom}_{\mathcal{C}}(X,C)$$

Proof. Put X = A to get that $\beta \circ \alpha = \beta_* \circ \alpha_*(\mathrm{id}_A) = 0$, so $\mathrm{im}(\alpha) \subseteq \mathrm{ker}(\beta)$. Now put $X = \mathrm{ker}(\beta)$ and let $\iota : \mathrm{ker}(\beta) \to B$ be the inclusion map. Then $\beta_*(\iota) = \beta \circ \iota = 0$, so there exists $\varphi \in \mathrm{Hom}_{\mathcal{C}}(\mathrm{ker}(\beta), A)$ such that $\alpha \circ \varphi = \alpha^*(\varphi) = \iota$. So $\mathrm{ker}(\beta) \subseteq \mathrm{im}(\alpha)$.

Proposition 0.0.2. Let \mathcal{C}, \mathcal{D} be abelian categories and let $F : \mathcal{C} \to \mathcal{D}$ be a functor left adjoint to $F^{\vee} : \mathcal{D} \to \mathcal{C}$. Then F is a right exact functor and F^{\vee} is a left exact functor.

Proof. Let $0 \to A \to B \to C$ be exact in \mathcal{C} and let $X \in \mathcal{C}$, then we have the following commutative diagram

$$0 \longrightarrow \operatorname{Hom}(F(X), A) \longrightarrow \operatorname{Hom}(F(X), B) \longrightarrow \operatorname{Hom}(F(X), C)$$

$$\sim \downarrow \qquad \sim \downarrow \qquad \sim \downarrow$$

$$0 \longrightarrow \operatorname{Hom}(X, F^{\vee}(A)) \longrightarrow \operatorname{Hom}(X, F^{\vee}(B)) \longrightarrow \operatorname{Hom}(X, F^{\vee}(C))$$

The top row is exact as the Hom functor is left exact, thus the bottom row is also exact. By $0.0.1, 0 \to F^{\vee}(A) \to F^{\vee}(B) \to F^{\vee}(C)$ must be exact. This proves that every right adjoint is left exact. In particular $F^{op} : \mathcal{C}^{op} \to \mathcal{D}^{op}$ (which is a right adjoint) is left exact, i.e, F is right exact.

Department of Mathematics, University of Wisconsin, Madison, WI 53706 $E\text{-}mail\ address:\ wirk@math.wisc.edu$