Enveloping Algebras and The Poincaré-Birkhoff-Witt Theorem

Rahbar Virk
Department of Mathematics
University of Wisconsin
Madison, WI 53706, USA
virk@math.wisc.edu

A Lie algebra \mathfrak{g} is not an algebra in the sense that the Lie bracket is not associative. We would like to find an associative algebra $U(\mathfrak{g})$ such that the modules for \mathfrak{g} are the same as those for $U(\mathfrak{g})$.

Let \mathfrak{g} be a Lie algebra and let T be the tensor algebra of the vector space \mathfrak{g} . Recall that

$$T = T^0 \oplus T^1 \oplus \cdots \oplus T^n \oplus \cdots$$

where $T^n = \mathfrak{g} \otimes \mathfrak{g} \otimes \cdots \mathfrak{g}$ (*n* times); in particular $T^0 = k.1$ and $T^1 = \mathfrak{g}$; the product in T is simply tensor multiplication. Let J be the two sided ideal of T generated by the tensors

$$x \otimes y - [x, y],$$

where $x, y \in \mathfrak{g}$. The associative algebra T/J is called the *enveloping algebra* (or sometimes the universal enveloping algebra) of \mathfrak{g} and is denoted by $U(\mathfrak{g})$. The composite mapping σ of the canonical mappings $\mathfrak{g} \to T \to U(\mathfrak{g})$ is termed the canonical mapping of \mathfrak{g} into $U(\mathfrak{g})$; observe that for all $x, y \in \mathfrak{g}$ we have that

$$\sigma(x)\sigma(y) - \sigma(y)\sigma(x) = \sigma([x, y])$$

We denote the canonical image in $U(\mathfrak{g})$ of $T^0 + T^1 + \cdots + T^q$ by $U_q(\mathfrak{g})$.

Lemma 1.1. Let σ be the canonical mapping of \mathfrak{g} into $U(\mathfrak{g})$, let A be an algebra with unity, and let τ be a linear mapping of \mathfrak{g} into A such that

$$\tau(x)\tau(y) - \tau(y)\tau(x) = \tau([x, y])$$

for all $x, y \in \mathfrak{g}$. There exists one and only one homomorphism τ' of $U(\mathfrak{g})$ into A such that $\tau'(1) = 1$ and $\tau' \circ \sigma = \tau$.

Proof. Note that $U(\mathfrak{g})$ is generated by 1 and $\sigma(\mathfrak{g})$ so τ' must be unique. Now let φ be the unique homomorphism of T into A that extends τ and such that $\varphi(1) = 1$. For $x, y \in \mathfrak{g}$, we have

$$\varphi(x \otimes y - y \otimes x - [x, y]) = \tau(x)\tau(y) - \tau(y)\tau(x) - \tau([x, y]) = 0,$$

hence $\varphi(J)=0$ and thus φ gives us a homomorphism τ' of $U(\mathfrak{g})$ into A such that $\tau'(1)=1$ and $\tau'\circ\sigma=\tau$.

Lemma 1.2. Let $a_1, \ldots, a_p \in \mathfrak{g}$, σ the canonical mapping of \mathfrak{g} into $U(\mathfrak{g})$, and π be a permutation of $\{1, \ldots, p\}$. Then

$$\sigma(a_1)\cdots\sigma(a_p)-\sigma(a_{\pi(1)})\cdots\sigma(a_{\pi(p)})\in U_{p-1}(\mathfrak{g}).$$

Proof. It suffices to prove the statement when π is the transposition of j and j+1. But observe that

$$\sigma(a_j)\sigma(a_{j+1}) - \sigma(a_{j+1})\sigma(a_j) = \sigma([a_j, a_{j+1}]).$$

The lemma now follows.

We now assume \mathfrak{g} to a be finite dimensional Lie algebra and fix a basis (x_1, \ldots, x_n) for \mathfrak{g} . We denote the canonical image of x_i in $U(\mathfrak{g})$ by y_i . For every finite sequence $I = (i_1, \ldots, i_p)$ of integers between 1 and n, we set $y_I = y_{i_1} y_{i_2} \ldots y_{i_p}$.

Lemma 1.3. The y_I , for all increasing sequences I of length $\leq p$, generate the vector space $U_p(\mathfrak{g})$.

Proof. Clearly the vector space $U_p(\mathfrak{g})$ is generated by y_I , for all sequences I of length $\leq p$. But now the required statement follows by applying the previous lemma.

Let P be the algebra $k[z_1, \ldots, z_n]$ of polynomials in n indeterminates z_1, \ldots, z_n . For every $i \in \mathbb{Z}_{\geq 0}$, let P_i be the set of elements of P of degree $\leq i$. If $I = (i_1, \ldots, i_p)$ is a sequence of integers between 1 and n, we set $z_I = z_{i_1} z_{i_2} \cdots z_{i_p}$.

Lemma 1.4. For every integer $p \geq 0$, there exists a unique linear mapping f_p of the vector space $\mathfrak{g} \otimes P_p$ into P which satisfies the following conditions:

- (A_p) $f_p(x_i \otimes z_I) = z_i z_I$ for $i \leq I$, $z_I \in P_p$;
- (B_p) $f_p(x_i \otimes z_I) z_i z_I \in P_q$ for $z_I \in P_q$, $q \leq p$;
- (C_p) $f_p(x_i \otimes f_p(x_j \otimes z_J)) = f_p(x_j \otimes f_p(x_i \otimes z_J)) + f_p([x_i, x_j] \otimes z_J)$ for $z_J \in P_{p-1}$. [The terms in (C_p) are meaningful by virtue of (B_p)].

Moreover, the restriction of f_p to $\mathfrak{g} \otimes P_{p-1}$ is f_{p-1} .

Proof. For p=0 the mapping given by $f_0(x_i \otimes 1) = z_i \otimes 1$, satisfies the conditions $(A_0), (B_0)$ and (C_0) , furthemore it is clear that the condition (A_0) forces this to be our linear mapping. Proceeding by induction, assume the existence and uniqueness of f_{p-1} . If f_p exists then f_p restricted to $\mathfrak{g} \otimes P_{p-1}$ satisfies $(A_{p-1}), (B_{p-1}), (C_{p-1})$ and is hence equal to f_{p-1} . Thus, to prove our claim it suffices to show that f_{p-1} has a unique linear extension f_p to $\mathfrak{g} \otimes P_p$ which satisfies $(A_p), (B_p), (C_p)$. Note that P_p is generated by z_I for an increasing sequence I of p elements. Thus, we must define $f_p(x_i \otimes z_I)$ for such a sequence I. If $i \leq I$, then the choice is dictated by (A_p) . Otherwise we can write I as (j, J) where j < i and $j \leq J$. Then we must have that

$$f_p(x_i \otimes z_I) = f_p(x_i \otimes f_{p-1}(z_j \otimes z_J))$$
 from (A_{p-1})
= $f_p(x_i \otimes f_{p-1}(x_i \otimes z_J)) + f_{p-1}([x_i, x_j] \otimes z_J)$ from (C_p) .

Now $f_{p-1}(x_i \otimes z_J) = z_i z_J + w$, with $w \in P_{p-1}$ (from (B_{p-1})). Hence

$$f_p(x_j \otimes f_{p-1}(x_i \otimes z_J)) = z_j z_i z_J + f_{p-1}(x_j \otimes w) \qquad \text{from } (A_p)$$
$$= z_j z_I + f_{p-1}(x_j \otimes w).$$

The above defines a unique linear extension f_p of f_{p-1} to $\mathfrak{g} \otimes P_p$, and by construction this extension satisfies (A_p) and (B_p) . All that remains to show is that f_p when defined this way satisfies (C_p) .

Observe that if $j \leq i$ and $j \leq J$ then (C_p) is satisfied by construction. Since $[x_j, x_i] = -[x_i, x_j]$, it is also satisfied if i < j and $i \leq J$. Since (C_p) is trivially satisfied if i = j, we see that (C_p) is satisfied if $i \leq J$ or $j \leq J$. Otherwise, J = (k, K), where $k \leq K$, k < i and k < j. For the sake of brevity we will write $f_p(x \otimes z) = xz$ for $x \in \mathfrak{g}$ and $z \in P_p$. Then from the induction hypothesis we have that

$$x_i z_J = x_j(x_k z_K) = x_k(x_j z_K) + [x_j, x_k] z_K$$
 (*)

Now $x_j z_K$ is of the form $z_j z_K + w$, where $w \in P_{p-2}$. As $k \leq K$ and k < j we can apply (C_p) to $x_i(x_k(z_j z_K))$, and to $x_i(x_k w)$ from the induction hypothesis and hence also to $x_i(x_k(x_j z_K))$; using (*) this then gives us that

$$x_i(x_j z_J) = x_k(x_i(x_j z_K)) + [x_i, x_k](x_j z_K) + [x_j, x_k](x_i z_K) + [x_i, [x_j, x_k]]z_k.$$

Interchanging i and j, this gives us that

$$\begin{split} x_i(x_j z_J) - x_j(x_i z_J) &= x_k(x_i(x_j z_K) - x_j(x_i z_K) + [x_i, [x_j, x_k]] z_K - [x_j, [x_i, x_k]] z_K \\ &= x_k([x_i, x_j] z_K) + (x_i, [x_j, x_k]] z_K + [x_j, [x_k, x_i]] z_K \\ &= [x_i, x_j] x_k z_K + [x_k, [x_i, x_j]] z_K + [x_i, [x_j, x_k]] z_K + [x_j, [x_k, x_i]] z_K \\ &= [x_i, x_j] x_k z_K \\ &= [x_i, x_j] z_J, \end{split}$$

as required. \Box

Lemma 1.5. The y_I , for every increasing sequence I, form a basis for the vector space $U(\mathfrak{g})$.

Proof. By the previous lemma (whose notation we will also use), there exists a bilinear mapping f of $\mathfrak{g} \times P$ into P such that $f(x_i, z_I) = z_i z_I$ for $i \leq I$ and

$$f(x_i, f(x_i, z_I)) = f(x_i, f(x_i, z_I)) + f([x_i, x_i], z_I),$$

for all i, j, J. Thus, we have a representation ϱ of \mathfrak{g} in P such that $\varrho(x_i)z_I = z_iz_I$ for $i \leq I$. From lemma 1.1 there exists a homomorphism φ of $U(\mathfrak{g}$ into End(P) such that $\varphi(y_i)z_I = z_iz_I$ for $i \leq I$. We thus obtain that, if $i_1 \leq i_2 \leq \cdots \leq i_p$, then

$$\varphi(y_{i_1}y_{i_2}\cdots y_{i_p})\cdot 1=z_{i_1}z_{i_2}\cdots z_{i_p}.$$

Thus, the y_I are linearly independent, for I increasing. From lemma 1.3 they generate $U(\mathfrak{g})$ and hence form a basis.

Proposition 1.6. The canonical mapping of \mathfrak{g} into $U(\mathfrak{g})$ is injective.

Proof. This is immediate from the previous lemma.

We thus have that \mathfrak{g} is embedded in $U(\mathfrak{g})$, so we will identify every element of \mathfrak{g} with its canonical image in $U(\mathfrak{g})$

Theorem 1.7 (Poincareé-Birkhoff-Witt). Let (x_1, \ldots, x_n) be a basis for the vector space \mathfrak{g} . Then the $x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_n^{\lambda_n}$, where $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$, form a basis for $U(\mathfrak{g})$.

Proof. This is again immediate from the previous lemma.

Taking the Poincaré-Birkhoff-Witt Theorem into account Lemma 1.1 can be restated as

Lemma 1.8. Let A be an algebra with unity, τ a linear mapping of $\mathfrak g$ into A such that $\tau(x)\tau(y) - \tau(y)\tau(x) = \tau([x,y])$ for all $x,y \in \mathfrak g$. Then τ can be uniquely extended to a homomorphism of $U(\mathfrak g)$ into A which transforms 1 into 1.

Corollary 1.9. Let V be a vector space, and \mathcal{R} and \mathcal{R}' the sets of representations of \mathfrak{g} and $U(\mathfrak{g})$ in V respectively. For all $\varrho \in \mathcal{R}$, there exists one and only one $\varrho' \in \mathcal{R}'$ which extends ϱ , and the mapping $\varrho \to \varrho'$ is a bijection of \mathcal{R} onto \mathcal{R}' .