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1. Reminders and notation

When dealing with categories we will not worry about set theoretical issues. We assume that we remain in
a given universe or, as put in [GeMa, p. 38], “that all the required hygiene regulations are obeyed”.

1.1. Notions concerning functors. Let F,G : A → B be functors between categories A and B. A morphism
of functors ϕ : F → G consists of a morphism ϕX : F (X) → G(X) for each X ∈ A, such that for every
morphism f : X → Y the diagram below commutes:

F (X)
F (f)

//

ϕX

��

F (Y )

ϕY

��

G(X)
G(f)

// G(Y )

We use the terms ‘functorial’, ‘natural’ and ‘canonical’ as synonyms for ‘a morphism of functors’ (with the
functors in question being obvious from the context). The identity endomorphism, of a functor F , will be
denoted 1F .

1.2. Additive categories and complexes. Let A and B be additive categories. We write Hom(A,B) for the
category of additive functors from A to B. Functors between additive categories will always be assumed to be
additive.

Let A be an additive category. We use cohomological notation for complexes. That is, a complex X• in A

is a sequence of morphisms
· · · −→Xi di−→Xi+1−→· · · ,
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such that di+1 ◦ di = 0 for each i. The morphisms di, collectively, are referred to as the differential of X•. If A

is an abelian category, the cohomology H∗(X•) of X• is the sequence of objects

Hi(X•) =
ker(di)

im(di−1)
.

Denote by Comp∗(A), ∗ = ∅,−,+, b, the category of all complexes, bounded above complexes, bounded
below complexes and bounded complexes in A, respectively. A chain map is a morphism in Comp(A). Viewing
each object as a complex concentrated in degree 0, we regard A as a subcategory of Comp(A). This is a full
and faithful embedding, i.e., HomA(X,Y ) = HomComp(A)(X,Y ), for each X,Y ∈ A.

The shift functor ?[1] : Comp(A) → Comp(A) is defined as follows: if X• is a complex with differential d,
then (X•[1])i = Xi+1 with differential d′i = −di+1. It is clear that ?[1] is a self-equivalence of Comp(A). For
n ∈ Z, set [n] = [1]n.

1.3. Double complexes. Let A be an additive category. A double complex is an object of Comp(Comp(A)).
Explicitly, a double complex X•,• is the data of {Xi,j , d′i,j , d

′′
i,j}i,j∈Z where Xi,j ∈ A and the pair of ‘differentials’

d′i,j : Xi,j → Xi,j+1, d′′i,j : Xi,j → Xi+1,j satisfy:

d′′i,j+1 ◦ d′i,j = 0, d′i+1,j ◦ d′′i,j = 0, d′′i,j+1 ◦ d′i,j = d′i+1,j ◦ d′′i,j .

· · · // Xi,j+1
d′′i,j+1

//

OO

Xi+1,j+1 //

OO

· · ·

· · · // Xi,j

d′′i,j

//

d′i,j

OO

Xi+1,j //

d′i+1,j

OO

· · ·OO OO

Given a double complex X•,•, we say that Xi,j is in bidegree (i, j).
Define Tot : Comp(Comp(A)) → Comp(A) by

Tot(X•,•)k =
⊕
i+j=k

Xi,j , with differential given by
(

d′i,j
(−1)id′′i,j

)
: Xi,j → Xi,j+1 ⊕Xi+1,j .

The complex Tot(X•,•) is the total complex associated to X•,•. The object Tot(X•,•) is well defined as long
as, for each k ∈ Z, there are only finitely many i, j ∈ Z with i+ j = k, such that Xi,j 6= 0, or alternatively, if A

admits countable direct sums.
Let X•, Y • be complexes in A with differentials d′i and d′′i , respectively. Let φ : X• → Y • be a chain map.

Consider the following double complex:

0 0

· · · // Y i
d′′i //

OO

Y i+1 //

OO

· · ·

· · · // Xi

d′i

//

φi

OO

Xi+1 //

φi+1

OO

· · ·

0

OO

0

OO

where Xi is in bidegree (i,−1). The mapping cone or, simply, the cone of φ is the total complex of this double
complex. We denote it by cone(φ). Explicitly,

cone(φ)i = Y i ⊕Xi+1 with differential di =
(
d′′i φi+1

0 −d′i+1

)
.



ADJOINT FUNCTORS AND TRIANGULATED FUNCTOR CATEGORIES 3

Define

ι : Y • → cone(φ) by
(

id
0

)
: Y i → Y i ⊕Xi+1,

and
δ : cone(φ) → X•[1] by

(
0 id

)
: Y i ⊕Xi+1 → Xi+1.

Both ι and δ are chain maps. A standard triangle is a sequence of morphisms of the form

X• φ−→Y •
ι−→cone(φ) δ−→X•[1]. (1.1)

1.4. Triangulated categories. A triangulated category consists of an additive category T, endowed with the
following structure:

• shift functor : a fixed equivalence ?[1] : T → T;
• distinguished triangles: a class of morphisms of the form X → Y → Z → X[1].

This structure is required to satisfy certain additional axioms. For these and the basic properties of triangulated
categories we refer the reader to [KaSc, Ch. 10]. We often write X → Y → Z  to emphasize that a sequence
of morphisms is a distinguished triangle. For n ∈ Z, set [n] = [1]n and for all X,Y ∈ T, put

Extn(X,Y ) = HomT(X,Y [n]).

Let T′ be another triangulated category with shift functor [1]′. A functor F : T → T′ is exact if F preserves
distinguished triangles and such that there exists a canonical isomorphism F ◦ [1] ' [1]′ ◦ F . The category of
exact functors from T to T′ is denoted HomTr(T,T′).

The Grothendieck group K0(T), of a triangulated category T, is the free abelian group on symbols [X], X ∈ T,
modulo the relation [X] = [X1] + [X2] for each distinguished triangle X1 → X → X2  . The axioms of a
triangulated category imply that [X[1]] = −[X] in K0(T).

Let T be a category. Denote by [T] the collection of isomorphism classes of objects in T. Suppose T is
triangulated. Let A and B be subcollections of [T]. Define

A ∗B = {[Y ] ∈ T | there is a distinguished triangle X → Y → Z  , with [X] ∈ A and [Z] ∈ B}.
The operation ∗ is associative [BBD, Lemme 1.3.10]. If A,B are subcategories of T, define A ∗B to be the full
subcategory consisting of objects with isomorphism class in [A] ∗ [B]. Further, inductively define 〈A〉i, i ∈ Z≥0

by 〈A〉0 = 0 and 〈A〉i+1 = A ∗ 〈A〉i. Since ∗ is associative, it is clear that 〈A〉i+1 = A ∗ 〈A〉i = 〈A〉i ∗ A. Set
〈A〉∞ =

⋃
i>0〈A〉i.

An object X of a triangulated category is filtered by objects Y1, . . . , Yn if there exists a sequence of objects
0 = X0, X1, . . . , Xn = X and distinguished triangles Xi−1 → Xi → Yi  . The following is immediate from the
definitions.

Lemma 1.4.1. Let T be a triangulated category and let A ⊂ T be a subcategory. An object X ∈ T is filtered by
objects in A if and only if X ∈ 〈A〉∞.

Examples.
(i) The homotopy category : Let A be an additive category. Write Ho∗(A), ∗ = ∅,−,+, b, for the homotopy

category of complexes, bounded above complexes, bounded below complexes and bounded complexes in
A, respectively. Objects of Ho(A) are complexes in A and morphisms are chain maps up to homotopy
equivalence. The categories Ho∗(A) are triangulated with the shift functor given by the shift on
complexes and with distinguished triangles given by those sequences of morphisms that are isomorphic
to standard triangles (1.1).

(ii) The derived category : Let A be an abelian category and let D∗(A), ∗ = ∅,−,+, b, denote the derived
category, the bounded above derived category, the bounded below derived category and the bounded
derived category of A, respectively. The category D∗(A) is obtained by localizing Ho∗(A) with respect
to the class of morphisms that induce isomorphisms on cohomology (for details on localization we refer
the reader to [KaSc, Chapters 7, 10.3, 13]).

Each of the categories D∗(A), ∗ = ∅,−,+, b, is triangulated. The shift functor is the shift on
complexes and distinguished triangles are those sequences of morphisms that are isomorphic to standard
triangles (1.1).
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It is useful to note that if 0−→X• f−→Y •
g−→Z•−→0 is an exact sequence in Comp(A), then there

exists a distinguished triangle X• f−→Y •
g−→Z•

h−→X•[1] in D(A), moreover Z• is isomorphic to cone(f)
in D(A) [KaSc, Proposition 13.1.14].

Viewing each object of A as a complex in degree 0, we regard A as a subcategory of D∗(A). This
is a full and faithful embedding [KaSc, Proposition 13.1.10(i)]. Furthermore, Exti(X,Y ) = 0 for all
i < 0 and each X,Y ∈ A [KaSc, Proposition 13.1.10 (ii)]. For interpretations of higher Ext groups see
[KaSc, Exercises 13.15, 13.16].

Let X ∈ D(A), then it is clear that X ∈ A if and only if Hi(X) vanishes for all i 6= 0. It follows
that X ∈ A if and only if X is filtered by objects in A.

1.5. Abelian categories. Let A and B be abelian categories. We write HomAb(A,B) for the category of exact
(i.e., preserving short exact sequences) functors from A to B.

The Grothendieck group K0(A), of an abelian category A, is the free abelian group on symbols [X], X ∈ A,
modulo the relation [X] = [X1] + [X2] for each short exact sequence 0 → X1 → X → X2 → 0.

The map

K0(Db(A)) → K0(A),

[X•] 7→
∑
i∈Z

[Hi(X•)]

is a group isomorphism. The inverse is given by the inclusion K0(A) ↪→ K0(Db(A)). We identify K0(Db(A))
with K0(A) via this isomorphism.

Let {Li} be a set of objects in A such that the classes [Li] comprise a basis of K0(A). Then for M ∈ A,
we write [M : Li] for the coefficient of Li when [M ] is expanded in terms of the basis {[Li]}. Note that
[M : Li] ∈ Z≥0.

Let A be an abelian category. A simple object is an object L ∈ A such that any monomorphismA→ L is either
0 or an isomorphism (this automatically implies that any morphism L → A is either 0 or a monomorphism).
An object of length one is synonymous with simple object. For n ≥ 2, objects of length n are inductively defined
to be those objects X such that fit into an exact sequence 0 → X ′ → X → L → 0, with X ′ of length n − 1
and L simple. Suppose every object in A has finite length, then the Jordan-Hölder theorem holds in A (with
the usual proof), i.e., for an object A ∈ A, the length of A is well defined and the simple objects that occur in
a ‘composition series’ of A are unique up to isomorphism and permutation. The category of finite dimensional
representations of an algebra is the prototype of such a category.

2. Adjoint functors

2.1. Adjunctions. Given categories A and B, an adjunction (F ∗, F ) is a pair of functors F : A → B and
F ∗ : B → A, and two natural transformations ε : F ∗F → idA and η : idB → FF ∗, such that the compositions

F
η1F−→FF ∗F

1F ε−→F and F ∗
1F∗η−→F ∗FF ∗

ε1F∗−→F ∗

are equal to the identity on F and F ∗, respectively. The morphisms η and ε are the unit and counit of the
adjunction, respectively.

An adjunction gives an isomorphism, functorial in A ∈ A and B ∈ B:

αA,B : HomA(F ∗(B), A) ∼−→HomB(B,F (A)),
f 7→ 1F f ◦ ηB .

The inverse is given by f ′ 7→ εA ◦ 1F∗f ′.
Conversely, a functorial isomorphism αA,B : HomA(F ∗(B), A) ∼−→HomB(B, (F (A)) provides an adjunction

(F ∗, F ). Namely, set
εA = α−1

A,F (A)(idF (A)) and ηB = αF∗(B),B(idF∗(B)).

If (F ∗, F ) is an adjunction, then the functor F ∗ is left adjoint to F and the functor F is right adjoint to F ∗.
The definitions imply:

Lemma 2.1.1. Let A and B be additive categories. Suppose (F ∗, F ) is an adjunction between functors F ∗ :
A → B and F : B → A.
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(i) If X ∈ A is such that F ∗(X) 6= 0, then the unit map ηX : X → FF ∗(X) is non-zero.
(ii) If Y ∈ B is such that F (Y ) 6= 0, then the counit map εY : F ∗F (Y ) → Y is non-zero.

2.2. Transpose maps. Let (F ∗, F ) and (G∗, G) be adjunctions between functors F ∗, G∗ : A → B and F,G :
B → A. Let η and ε denote the unit and counit of the adjunction (F ∗, F ), and let η′ and ε′ denote the unit
and counit of the adjunction (G∗, G). Let φ ∈ Hom(F,G). The transpose φ∗ : G∗ → F ∗ is the composition

G∗
1G∗η

// G∗FF ∗
1G∗φ1F∗

// G∗GF ∗
ε′1F∗

// F ∗. (2.1)

Proposition 2.2.1. Let A and B be additive categories. Let (F ∗, F ) and (G∗, G) be adjunctions between
functors F ∗, G∗ : A → B and F,G : B → A. Let φ : F → G be a natural transformation.

(i) Let η, ε denote the unit and counit of (F ∗, F ) and let η′, ε′ be the unit and counit of (G∗, G). Then the
following diagrams commute:

F ∗F
ε // id

G∗F

φ∗1F

OO

1G∗φ
// G∗G

ε′

OO FF ∗
φ1F∗

// GF ∗

id

η

OO

η′
// GG∗

1Gφ
∗

OO

(ii) If ψ : F → G is a natural transformation, then (φ+ ψ)∗ = φ∗ + ψ∗.
(iii) Let (H∗,H) be an adjunction between functors H∗ : A → B and H : B → A. Further, let ψ : G → H

be a natural transformation. Then (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

Proof.
(i) For the first diagram we have that

ε ◦ φ∗1F = ε ◦ ε′1F∗1F ◦ 1G∗φ1F∗1F ◦ 1∗Gη1F
= ε′ ◦ 1G∗1Gε ◦ 1G∗φ1F∗1F ◦ 1∗Gη1F
= ε′ ◦ 1G∗φ ◦ 1G∗1F ε ◦ 1G∗η1F

= ε′ ◦ 1G∗φ.

The first equality is the definition of φ∗, the second and third equality are a consequence of ε′ and φ
being morphisms of functors. The last equality follows from the definition of the unit and counit.

The proof for the second diagram is similar.
(ii) Recall that we are assuming that all functors between additive categories are additive, i.e., the induced

maps on Hom groups are homomorphisms. The claim is now immediate from the definitions.
(iii) Let η′′, ε′′ be the unit and counit of (H∗,H). Then

φ∗ ◦ ψ∗ = ε′1F∗ ◦ 1G∗φ1F∗ ◦ 1G∗η ◦ ε′′1G∗ ◦ 1H∗ψ1G∗ ◦ 1H∗η′

= ε′1F∗ ◦ 1G∗φ1F∗ ◦ ε′′1G∗FF∗ ◦ 1H∗HG∗η ◦ 1H∗ψ1G∗ ◦ 1H∗η′

= ε′1F∗ ◦ 1G∗φ1F∗ ◦ ε′′1G∗FF∗ ◦ 1H∗ψ1G∗FF∗ ◦ 1H∗GG∗η ◦ 1H∗η′

= ε′1F∗ ◦ ε′′1G∗GF∗ ◦ 1H∗HG∗φ1F∗ ◦ 1H∗ψ1G∗FF∗ ◦ 1H∗GG∗η ◦ 1H∗η′

= ε′1F∗ ◦ ε′′1G∗GF∗ ◦ 1H∗ψ1G∗GF∗ ◦ 1H∗GG∗φ1F∗ ◦ 1H∗GG∗η ◦ 1H∗η′

= ε′1F∗ ◦ ε′′1G∗GF∗ ◦ 1H∗ψ1G∗GF∗ ◦ 1H∗GG∗φ1F∗ ◦ 1H∗η′1FF∗ ◦ 1H∗η

= ε′1F∗ ◦ ε′′1G∗GF∗ ◦ 1H∗ψ1G∗GF∗ ◦ 1H∗η′1GF∗ ◦ 1H∗φ1F∗ ◦ 1H∗η

= ε′′1F∗ ◦ 1H∗Hε
′
1F∗ ◦ 1H∗ψ1G∗GF∗ ◦ 1H∗η′1GF∗ ◦ 1H∗φ1F∗ ◦ 1H∗η

= ε′′1F∗ ◦ 1H∗ψ1F∗ ◦ 1H∗Gε
′
1F∗ ◦ 1H∗η′1GF∗ ◦ 1H∗φ1F∗ ◦ 1H∗η

= ε′′1F∗ ◦ 1H∗ψ1F∗ ◦ 1H∗φ1F∗ ◦ 1H∗η

= ε′′1F∗ ◦ 1H∗(ψ ◦ φ)1F∗ ◦ 1H∗η

= (ψ ◦ φ)∗.
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All of the equalities, except the last three, are due to the fact that all the morphisms involved are
natural transformations. The first of the last three equalities follows from the definition of the unit
and counit, the remaining two are obvious.

�

Proposition 2.2.2. Let (F ∗, F ) be an adjunction between functors F ∗ : A → B and F : B → A.

(i) id∗F = idF∗ ;
(ii) 0∗ = 0;
(iii) if e : F → F is idempotent, i.e., e2 = e, then e∗ is also idempotent.

Proof. (i) is immediate from the definition of transpose maps and the defining properties of the unit/counit.
(ii) follows from Proposition 2.2.1 (ii). Combining (i),(ii) and Proposition 2.2.1 (ii), (iii), we get that

e∗ ◦ (idF∗ − e∗) = ((idF − e) ◦ e)∗ = 0∗ = 0.

This shows (iii). �

2.3. Composing adjoints. Let (F ∗, F ) and (G∗, G) be adjunction between functors G∗ : A → B, G : B → A,
F ∗ : B → C and F : C → B. Let η and ε be the unit and counit of (F ∗, F ), and let η′ and ε′ be the unit and
counit of (G∗, G).

Let η : idB → GFF ∗G∗ be the composition idA
η′

// GG∗
1Gη1G∗

// GF ∗FG∗ , and let ε : F ∗G∗GF →

idA be the composition F ∗G∗GF
1F∗ε′1F // F ∗F

ε // idB .

Lemma 2.3.1. The natural transformations η and ε define an adjunction (F ∗G∗, GF ).

Proof. We have

1GF ε ◦ η1GF = 1GF ε ◦ 1GFF∗ε′1F ◦ 1Gη1G∗GF ◦ η′1GF = 1GF ε ◦ 1Gη1F ◦ 1Gε′1F ◦ η′1GF = 1GF ,

where the first equality is by definition, the second equality holds due to η and ε′ being natural transformations
and the last equality follows from the definition of unit/counit.

The proof that ε1F∗G∗ ◦ 1F∗G∗η = 1F∗G∗ is similar. �

Lemma 2.3.2.

(i) The natural transformation η′ is the transpose of ε, i.e., ε∗ = η′.
(ii) The natural transformation ε is the transpose of η′, i.e., (η′)∗ = ε.

Proof. By definition,
ε∗ = ε1F∗F ◦ η = ε1F∗F ◦ 1F∗η1F ◦ η′ = η′.

Similarly,
(η′)∗ = ε ◦ 1F∗ε′1F ◦ 1F∗F η

′ = ε.

�

2.4. Right transposes. Let (F ∗, F ) and (G∗, G) be adjunctions between functors F ∗, G∗ : A → B and F,G :
B → A. Write η and ε for the unit and counit of (F ∗, F ), and write η′ and ε′ for the unit and counit of (G∗, G).
Suppose ψ : G∗ → F ∗ is a natural transformation. Then the right transpose ψ∗ : F → G is the composition

F
η′1F// GG∗F

1Gψ
′
1F// GF ∗F

1Gε // G.

The following allows us to transport all results for transposes to right transposes:

Proposition 2.4.1. Let (F ∗, F ) and (G∗, G) be adjunctions between functors F ∗, G∗ : A → B and F,G : B →
A. Let φ : F → G be a natural transformation. Then (φ∗)∗ = φ. Similarly, if ψ : G∗ → F ∗ is a natural
transformation, then (ψ∗)∗ = ψ
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Proof. Let η, ε be the unit and counit of (F ∗, F ) and let η′, ε′ be the unit and counit of (G∗, G). Then

(φ∗)∗ = 1Gε ◦ 1Gε′1F∗F ◦ 1GG∗φ1F∗F ◦ 1GG∗η1F ◦ η′1F
= 1Gε ◦ 1Gε′1F∗F ◦ 1GG∗φ1F∗F ◦ η′1FF∗F ◦ η1F
= 1Gε ◦ 1Gε′1F∗F ◦ η′1GF∗F ◦ φ1F∗F ◦ η1F
= 1Gε ◦ φ1F∗F ◦ η1F
= φ ◦ 1F ε ◦ η1F
= φ.

The first equality is by definition, the second, third and fifth equalities are due to the fact that all morphisms
involved are natural transformations. The fourth and last equality follow from the definition of the unit and
counit.

The proof that (ψ∗)∗ = ψ is similar. �

2.5. Complexes of functors. Let A and B be additive categories and let F0, F1, . . . , Fn be functors from A

to B. Suppose

F = 0−→F0
d′0−→F1−→· · ·

d′n−1−→Fn−→0

is a complex. That is, each d′i : Fi → Fi+1 is a natural transformation and d′i+1◦d′i = 0. Let · · · −→Xi d
′′
i−→Xi+1−→· · ·

be a complex in A. Then we obtain a double complex

· · · // Fi+1(Xj)
Fi+1(d

′′
j )
//

OO

Fi+1(Xj+1) //

OO

· · ·

· · · // Fi(Xj)
Fi(d

′′
j )

//

d′i

OO

Fi(Xj+1) //

d′i

OO

· · ·
OO OO

This gives a fully faithful embedding of Compb(Hom(A,B)) in Hom(Comp(A),Comp(Comp(B))). Further-
more, taking the total complex of this double complex allows us to consider F as a functor from Comp(A) to
Comp(B):

Compb(Hom(A,B)) ↪→ Hom(Comp(A),Comp(Comp(B))) Tot−→Hom(Comp(A),Comp(B)).

Proposition 2.5.1. Let (F ∗i , Fi), i = 0, 1, . . . , n, be adjunctions between functors F ∗i : A → B and Fi : B → A.
Suppose

Υ = 0−→F0
φ0−→F1

φ1−→· · · φn−1−→Fn−→0,

with F0 in degree 0, is a complex of functors. Set

Υ∗ = 0−→F ∗n
φ∗n−1−→F ∗n−1

φ∗n−2−→ · · · φ
∗
0−→F ∗0−→0,

with F ∗0 in degree 0. Then Υ∗ is left adjoint to Υ.
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Proof. The composition Υ∗Υ is given by the double complex

· · · // F ∗i Fi
1F∗

i
φi

//

OO

F ∗i Fi+1
//

OO

· · ·

· · · // F ∗i+1Fi
1F∗

i+1
φi

//

φ∗i 1Fi

OO

F ∗i+1Fi+1

φ∗i 1Fi+1

OO

// · · ·
OO OO

with F ∗i Fj in bidegree (−i, j). The degree 0 term of this total complex is
⊕n

i=0 F
∗
i Fi. Furthermore, the

differential on the degree 0 term, is given by(
φ∗i−11Fi

(−1)i1F∗
i
φi

)
: F ∗i Fi → F ∗i−1Fi ⊕ F ∗i Fi+1.

View the identity functor as a complex concentrated in degree 0. Define a map ev : Υ∗Υ → id by(
ε0 ε1 −ε2 −ε3 ε4 ε5 · · ·

)
:

n⊕
i=0

F ∗i Fi → id.

Proposition 2.2.1 (i) implies that this is a chain map.
Similarly ΥΥ∗ is given by the double complex

· · · // FiF
∗
i

1Fi
φ∗i−1

//

OO

FiF
∗
i−1

//

OO

· · ·

· · · // Fi−1F
∗
i

φi−11F∗
i−1

OO

1Fi−1φ
∗
i−1

// Fi−1F
∗
i−1

//

φi−11F∗
i−1

OO

· · ·
OO OO

with FiF
∗
j in bidegree (i,−i). The degree 0 term of this total complex is

⊕n
i=0 FiF

∗
i . Furthermore, the

differential on the degree 0 term is given by(
φi1F∗

i

(−1)i1Fiφ
∗
i−1

)
: FiF ∗i → Fi+1F

∗
i ⊕ FiF

∗
i−1.

As before, view the identity functor as a complex concentrated in degree 0 and define a map coev : id → ΥΥ∗

by 

η0
η1
−η2
−η3
η4
η5
...


: id 7→

n⊕
i=0

FiF
∗
i .

Again, it follows from Proposition 2.2.1 (i) that this is a chain map.
As both ev and coev are non-zero only in degree 0, we infer that they give an adjunction (Υ∗,Υ). �
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Proposition 2.5.2. Suppose F ∗, G∗ : Comp(A) → Comp(B) and F,G : Comp(B) → Comp(A) are bounded
complexes of functors. Further, suppose that we are given adjunctions (F ∗, F ) and (G∗, G). Let Φ : F → G be
a natural transformation. Let Υ∗ = cone(Φ∗)[−1] and let Υ = cone(Φ). Then Υ∗ is left adjoint to Υ.

Proof. Without loss of generality, we may assume that

F = 0−→F0
d0−→F1−→· · · dn−1−→Fn−→0 and G = 0−→G0

d′0−→G1−→· · ·
d′n−1−→Gn−→0,

with Fi, Gi functors from B to A, and with F0, G0 in degree 0. We may further assume that we are given
adjunctions (F ∗i , Fi) and (G∗i , Gi), for each i, such that

F ∗ = 0−→F ∗n
d∗n−1−→F ∗n−1−→· · · d∗0−→F ∗0−→0 and G∗ = 0−→G∗n

d′∗n−1−→G∗n−1−→· · · d
′∗
0−→G∗0−→0,

with F ∗0 , G
∗
0 in degree 0, and such that Φ and Φ∗ are given by

· · · // Gi
d′i // Gi+1

// · · ·

· · · // Fi
di

//

φi

OO

Fi+1
//

φi+1

OO

· · ·

and · · · // F ∗i+1

d∗i // F ∗i
// · · ·

· · · // G∗i+1
d′∗i

//

φ∗i+1

OO

G∗i
//

φ∗i

OO

· · ·

respectively. Then we deduce that

Υi = Gi ⊕ Fi+1 with differential given by
(
d′i φi+1

0 −di+1

)
: Υi → Υi+1.

Similarly,

(Υ∗)−i = F ∗i ⊕G∗i−1 with differential given by
(
d∗i−1 φ∗i−1

0 −d′∗i−2

)
: (Υ∗)−i → (Υ∗)−(i−1).

By Proposition 2.5.1, we know that there exists a complex of functors, call it Υ′, that is left adjoint to Υ.
Moreover, using Proposition 2.2.1 (ii) and (iii) we obtain an explicit description for Υ′:

(Υ′)−i = F ∗i+1 ⊕G∗i with differential given by
(
−d∗i −φ∗i
0 d′∗i−1.

)
: (Υ′)−i → (Υ′)−(i−1).

It follows that Υ∗[−1] = Υ′. �

Remarks.
(i) Proposition 2.5.2 implies Proposition 2.5.1.
(ii) Let F, F ∗, G,G∗ and φ : F → G be as in the proposition. Consider the induced functors between Ho(A)

and Ho(B) (or between D(A) and D(B) if A and B are abelian). Much of the content of Proposition
2.5.2 is that there are distinguished triangles

F
φ−→G

ι−→Υ δ−→F [1] and Υ∗ ι∗−→G∗
φ∗−→F ∗

δ∗−→Υ∗[1],

with Υ∗ left adjoint to Υ and where ι∗, δ∗, φ∗ signify transpose maps. We note that we haven’t yet
explained what a ‘distinguished triangle of functors’ is. For the moment this should be taken to
mean that whenever the sequence of natural transformations is evaluated on an object, it yields a
distinguished triangle in the corresponding triangulated category. We will clarify this concept in §3.

3. Triangulated functor categories

Let A and B be additive categories. By taking total complexes, each object of Compb(HomAb(A,B)) gives
an exact functor from Comp(A) to Comp(B), see §2.5. This gives a functor

Compb(HomAb(A,B)) → HomTr(Ho∗(A),Ho∗(B)), ∗ = ∅,+,−, b.
Write Homalg(Ho∗(A),Ho∗(B)) for the image of this functor. A moments thought shows that this category is
equivalent to Hob(HomAb(A,B)). In particular, Homalg(Ho∗(A),Ho∗(B)) is triangulated.

Each F ∈ HomTr(Ho∗(A),Ho∗(B)) also induces a functor F : D∗(A) → D∗(B). Thus, we obtain a functor

· : Homalg(Ho∗(A),Ho∗(B)) → HomTr(D∗(A),D∗(B)).
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Let Homalg(D∗(A),D∗(B)) denote the image of this functor. It is clear that Homalg(D∗(A),D∗(B)) is the
localization of Hob(HomAb(A,B)) with respect to the class of all morphisms that become isomorphisms under
· . Our immediate goal is to show that this is a triangulated category. This is essentially a consequence of
the fact that distinguished triangles in Homalg(Ho∗(A),Ho∗(B)) applied to objects of D∗(A) give distinguished
triangles in D∗(B).

Let N ⊂ Hob(HomAb(A,B)) be the full subcategory consisting of those objects that are sent to the zero
functor under · . Then

Proposition 3.0.3.
(i) 0 ∈ N,
(ii) F ∈ N if and only if F [1] ∈ N,
(iii) if F → G→ H  is a distinguished triangle in Hob(HomAb(A,B)) with F,H ∈ N, then G ∈ N.

Proof. (i) and (ii) are obvious. For (iii), let X ∈ D∗(A). Then F (X) → G(X) → H(X)  is a distinguished
triangle. Thus, F (X) = H(X) = 0 implies G(X) = 0. �

Define

NQ = {φ : F → G | there exists a distinguished triangle F
φ−→G−→H  with H ∈ N}.

Proposition 3.0.4. Let DNQ be the localization of Hob(HomAb(A,B)) by NQ. Let Q : Hob(HomAb(A,B)) →
DNQ be the localization functor.

(i) DNQ is an additive category endowed with an auto-equivalence (the image of [1], still denoted by [1]).
(ii) Define a distinguished triangle in DNQ as being isomorphic to the image of a distinguished triangle in

Hob(A,B)) under Q. Then DNQ is a triangulated category and Q is a triangulated functor.
(iii) If F ∈ N, then Q(F ) = 0.

Proof. This is a straightforward application of a classical result on localization of triangulated categories, see
[KaSc, Theorem 10.2.3]. �

Proposition 3.0.5. Let φ be a morphism in Hob(HomAb(A,B)). Then φ is in NQ if and only if φ is an
isomorphism in HomTr(D∗(A),D∗(B)).

Proof. Let φ : F → G be in Hob(Hom(A,B)). Complete φ to a distinguished triangle F
φ−→G−→H  . Then

each X in Db(A) gives a distinguished triangle

F (X)
φ−→G(X)−→H(X) .

If φ is an isomorphism then H(X) = 0 and so φ belongs to NQ. Conversely, if φ is in NQ, then the above
distinguished triangle reduces to F (X)

φ−→G(X)−→0 . This implies that φ is an isomorphism. �

Corollary 3.0.6. The category Homalg(D∗(A),D∗(B)) is triangulated. Furthermore,
(i) The shift functor on Homalg(D∗(A),D∗(B)) coincides with composition with [1];
(ii) Every distinguished triangle in Homalg(D∗(A),D∗(B)) is isomorphic to a standard triangle.

Proof. Proposition 3.0.5 shows that DNQ is equivalent to Homalg(D∗(A),D∗(B)). Now Proposition 3.0.4 shows
that Homalg(D∗(A),D∗(B)) is triangulated and also gives (i) and (ii). �

We have established a triangulated structure on our functor categories. In the situation A = B, i.e., when
dealing with functors from A to A, there is another important structure on these categories. Namely, composition
of functors endows these categories with a monoidal structure. These two structures are compatible in various
ways.

Proposition 3.0.7. Let T be one of Homalg(Ho∗(A),Ho∗(A)) or Homalg(D∗(A),D∗(A)).
(i) Let E ∈ T and suppose F

f−→G
g−→H

h−→F [1] is a distinguished triangle in T. Then both

EF
1Ef−→EG

1Eg−→EH
1Eh−→EF [1] and FE−→GE−→HE−→FE[1]

are distinguished triangles.
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(ii) Let F → G→ H  be a distinguished triangle. If F and G admit left (or right) adjoints, then so does
H.

(iii) Let F ∗, F,G∗, G,H∗,H ∈ T and suppose (F ∗, F ), (G∗, G) and (H∗,H) are adjunctions. Then

F
f−→G

g−→H
h−→F [1]

is a distinguished triangle if and only if

F ∗[−1]−h
∗

−→H∗ g∗−→G∗
f∗−→F ∗

is a distinguished triangle.

Proof. (i) is clear, (ii) follows from Proposition 2.5.2. (iii) follows from consideration of standard triangles. �

Remarks.
(i) The results above should generalize easily to the stable category of a Frobenius category. That is,

one should be able to put a triangulated structure in much the same way on appropriate categories of
functors acting on the stable category. This should encompass ‘enhanced triangulated categories’, i.e.,
DG categories etc.

(ii) Perhaps the correct setting for this framework is in the context of the 2-category of Frobenius categories
and the 2-category of triangulated categories. Then our results on triangulated functor categories
should be a statement involving the existence of a 2-functor between these categories.

(iii) Triangulated functor categories should perhaps be developed under the framework of ‘triangulated
monoidal categories’.

(iv) If A is the category of representations of a finite dimensional algebra then one can show that an
equivalence in Homalg(D∗(A),D∗(A)) lifts to an equivalence in Homalg(Ho∗(A),Ho∗(A)). Can this be
generalized to other abelian categories?

(v) In what setting can every equivalence on D∗(A) be obtained as an equivalence in Homalg(D∗(A),D∗(A))?
Some sort of partial answer should be provided by Rickard’s Morita theory for triangulated categories.
Is the situation analogous to Orlov’s result in the geometric context on Fourier-Mukai kernels?
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