
Taylor Series Expansion

Theorem. Suppose that f : U → C is complex differentiable on a disk B = B(a,R). Then the
Taylor series of f at a,
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converges absolutely to f on B, and uniformly on any proper subdisk B(a, r).

Proof. We need only show that f has the power series expansion
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at every point z ∈ B(a,R), for this implies that f is analytic at a with a radius of convergence at
least R. Thus, the absolute and uniform convergence statements will be consequences of analyticity.

So, fix z ∈ B(z,R). Choose a radius r such that |a − z| < r < R, and consider the curve
γ = {|ζ − a| = r}. Note that z lies on the inside of this circle, and moreover, the Cauchy Integral
Formula asserts that
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At this point, we’d like to exchange the summation and the integral, which is valid provided the
series
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converges uniformly on a neighborhood of the curve γ. However, observe that since f is continuous
on γ, it is bounded over γ (say by M), whence
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By the choice of r, the expression in modulus is a real number less than 1, whence the series
∑
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is a convergent geometric series. But then the Weierstrass M -Test asserts the series of functions
converges uniformly and absolutely. In fact, using the geometric series again, we see
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Thus, we can write
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where the last equality follows from the Cauchy Integral Formula. 2


