Complex antiderivatives and Goursat's Theorem

Theorem. Suppose U is open and $f: U \to \mathbb{C}$ is continuous. Then f possesses a complex antiderivative on U if and only if

$$\int_{\Delta} f \, dz = 0$$

for any triangular path Δ in U.

Before getting to the proof, there is an immediate corollary:

Corollary. Suppose U is a simply-connected domain and $f : U \to \mathbb{C}$ is complex differentiable. Then f possesses a complex antiderivative on U.

Proof of corollary. If f is a \mathbb{C} -differentiable function on a simply connected domain, then Cauchy's Theorem implies $\int_{\gamma} f dz = 0$ for any closed curve γ , and in particular for triangular γ . \Box

Proof of theorem. (\Longrightarrow) Suppose F'(z) = f(z), and let γ be any smooth curve from in U a point α to a point β . If we parametrize γ by z = z(t) with $a \leq t \leq b$, then by the *real* Fundamental Theorem of Calculus (FTC), applyed to the real and imaginary parts of the integral, we have

$$\int_{\gamma} f \, dz = \int_{a}^{b} f\left(z(t)\right) z'(t) \, dt = \int_{a}^{b} F'\left(z(t)\right) z'(t) \, dt$$
$$= \int_{a}^{b} \frac{d}{dt} \left\{ F\left(z(t)\right) \right\} \, dt = F\left(z(b)\right) - F\left(z(a)\right) = F(\beta) - F(\alpha).$$

This is a complex analogue of the first part of the real FTC.

In particular, if $\Delta = [z_1, z_2, z_3, z_1]$, then

$$\int_{\Delta} f \, dz = \int_{[z_1, z_2]} f \, dz + \int_{[z_2, z_3]} f \, dz + \int_{[z_3, z_1]} f \, dz$$
$$= \left(F(z_2) - F(z_1) \right) + \left(F(z_3) - F(z_2) \right) + \left(F(z_1) - F(z_3) \right) = 0.$$

(\Leftarrow) Assume U is simply connected, and fix a $z_0 \in U$. Define $F: U \to \mathbb{C}$ by

$$F(z) := \int_{P[z_0, z]} f(\zeta) \, d\zeta,$$

where $P[z_0, z]$ is any polygonal path connecting z_0 to z.

Observe that F is well-defined. Since U is open and connected, it is polygonally arcwise connected, so a polygonal path γ from z_0 to z exists. Moreover, if η is another such path, then $\gamma - \eta$ is a closed polygonal path. Since such a path can be decomposed as a sum of triangular paths, we conclude

$$0 = \int_{\gamma-\eta} f(\zeta) \, d\zeta = \int_{\gamma} f(\zeta) \, d\zeta - \int_{\eta} f(\zeta) \, d\zeta.$$

Hence, the two lines integrals over γ and η agree.

It remains to show that F is an antiderivative of f, i.e. that

$$\lim_{h \to 0} \frac{F(z+h) - F(z)}{h} = f(z) \qquad \forall z \in U.$$

Fix z, and let $\epsilon > 0$. Since U is open, there exits an r > 0 such that $B(z, r) \subset U$. Moreover, since f is continuous at z, there exists $0 < \delta < r$ such that

$$|w-z| < \delta \Longrightarrow |f(w) - f(z)| < \epsilon.$$

Now, fix a polygonal path γ from ζ to z. If 0 < |h| < r, then $z + h \in B(z, r)$, and so $\gamma + [z, z + h]$ is a polygonal path from ζ to z + h. Hence,

$$\frac{F(z+h)-F(z)}{h} = \frac{1}{h} \left(\int_{\gamma+[z,z+h]} f(\zeta) \, d\zeta - \int_{\gamma} f(\zeta) \, d\zeta \right) = \frac{1}{h} \int_{[z,z+h]} f(\zeta) \, d\zeta.$$

On the other hand, using the first half of this theorem, since 1 has the antiderivative ζ ,

$$\int_{[z,z+h]} 1 \, d\zeta = \zeta \Big|_z^{z+h} = (z+h) - z = h,$$

whence

$$\frac{F(z+h) - F(z)}{h} - f(z) = \frac{1}{h} \int_{[z,z+h]} f(\zeta) \, d\zeta - f(z) \left[\frac{1}{h} \int_{[z,z+h]} 1 \, d\zeta \right] = \frac{1}{h} \int_{[z,z+h]} f(\zeta) - f(z) \, d\zeta.$$

Thus, if $|h| < \delta$, then

$$\begin{aligned} \left|\frac{F(z+h) - F(z)}{h} - f(z)\right| &= \left|\frac{1}{h} \int\limits_{[z,z+h]} f(\zeta) - f(z) \, d\zeta\right| \le \frac{1}{|h|} \int\limits_{[z,z+h]} |f(\zeta) - f(z)| \, |dz| \\ &< \frac{1}{|h|} \int\limits_{[z,z+h]} \epsilon \, |dz| = \frac{1}{|h|} \cdot \epsilon \, |h| = \epsilon, \end{aligned}$$

which completes the proof. \Box