The Cauchy Integral Formula

Theorem. Suppose U is a simply connected domain and $f : U \to \mathbb{C}$ is continuous and conservative. If γ is a positively-oriented Jordan curve around a point z^* , then

$$f(z^*) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z^*} dz.$$

Proof. For R > 0, define the circular path

$$C_R := \{ |z - z^*| = R \} = \{ z^* + Re^{it} : 0 \le t \le 2\pi \}.$$

Observe that C_R is a positively-oriented Joradan curve. Also, let us define

$$K(z) := \frac{f(z)}{z - z^*},$$

which is \mathbb{C} -differentiable on $U \setminus \{z^*\}$. We wish to prove that

$$\int_{\gamma} K(z) \, dz = 2\pi \, i \, f(z^*).$$

Step 1. Pick a circle, any circle. Since z^* lies inside domain inside the curve γ , there exists a radius R > 0 such that

$$B(z^*, R) \subset \text{inside}(\gamma) \subset U.$$

In particular, this implies that for any radius 0 < r < R, the circle C_r lies inside γ . Since the function K(z) is \mathbb{C} -differentiable on the region between γ and C_r , which does not contain z^* , the homotopy property of conservative functions allows us to conclude that

$$\int_{\gamma} K(z) \, dz = \int_{C_r} K(z) \, dz \qquad \forall \, 0 < r < R.$$

In particular, the integral over any small circle is a constant, independent of the radius of the circle.

Step 2: Use continuity to give K the squeeze. Let $\epsilon > 0$. Since f is continuous at the point $z^* \in U$, there exists $0 < \delta < R$ such that

$$|z - z^*| < \delta \Longrightarrow |f(z) - f(z^*)| < \epsilon.$$

As before, we have

$$\int_{C_r} 1 \, dz = 0,$$

while the parameterization $z(t) = z^* + r e^{it}$ for $0 \le t \le 2\pi$ yields

$$\int_{C_r} \frac{1}{z - z^*} \, dz = \int_0^{2\pi} \frac{1}{z(t) - z^*} \, z'(t) \, dt = \int_0^{2\pi} \frac{1}{r \, e^{it}} \, i \, r \, e^{it} \, dt = \int_0^{2\pi} i \, dt = 2\pi \, i.$$

Thus

$$\int_{C_r} \frac{f(z) - f(z^*)}{z - z^*} dz$$

= $\int_{C_r} \frac{f(z)}{z - z^*} dz - \int_{C_r} \frac{f(z^*)}{z - z^*} dz$
= $\int_{C_r} K(z) dz - f(z^*) \int_{C_r} \frac{1}{z - z^*} dz$
= $\int_{C_r} K(z) dz - 2\pi i f(z^*)$
= $\int_{\gamma} K(z) dz - 2\pi i f(z^*).$

Now, if $0 < r < \delta$, then

$$\begin{split} \left| \int_{\gamma} K(z) \, dz - 2\pi \, i \, f(z^*) \right| &= \left| \int_{C_r} \frac{f(z) - f(z^*)}{z - z^*} \, dz \right| \le \int_{C_r} \left| \frac{f(z) - f(z^*)}{z - z^*} \right| |dz| \\ &\le \int_{C_r} \frac{\left| f(z) - f(z^*) \right|}{|z - z^*|} \, |dz| \le \int_{C_r} \frac{\epsilon}{r} \, |dz| = 2\pi \, \epsilon. \end{split}$$

But $\epsilon > 0$ was abritary, whence letting $\epsilon \to 0$ above implies

$$\left|\int_{\gamma} K(z) \, dz - 2\pi \, i \, f(z^*)\right| = 0,$$

which completes the proof. \Box