
Laurent Expansion

• Laurent Expansion Theorem. Suppose that f is holomorphic on an open annulus A(a; r,R).
Then f has a Laurent series expansion

f(z) =
∞∑

n=−∞
cn (z − a)n

which converges absolutely in the annulus and uniformly on compact subannuli. Moreover,
the coefficients cn of the Laurent expansion are determined uniquely as

cn =
1

2π i

∫

γ

f(ζ)
ζ − a

dζ, n = 0,±1,±2,±3, . . . ,

where γ is any positively oriented Jordan curve in the annulus which wraps around a.

• Local Laurent expansion. A Laurent series expansion of f on a “deleted neighborhood”
of a, i.e. an annulus of the form A(a; 0, R), is called the local Laurent expansion of f at a.

• Laurent estimates. These are analogs of the Cauchy Estimates for holomorphic functions.
If f(z) =

∑
n∈Z cn(z− a)n is a Laurent expansion in the annulus A(a; R1, R2), then for every

R1 < R < R2, we have

|cn| ≤ MR

Rn
, where MR := max

|z−a|=R

∣∣f(z)
∣∣.

• Useful Laurent series. In practice, its useful to know a couple of important Laurent (and
Taylor) series. Among them

Geometric
(|z| < 1)

1
1− z

=
∞∑

n=0

zn = 1 + z + z2 + z3 + · · ·

Geometric
(|z| > 1)

1
1− z

=
1

−z
(
1− 1

z

) =
∞∑

n=1

− 1
zn

= −1
z
− 1

z2
− 1

z3
− · · ·

Derivatives!
1

(1− z)k+1
=

1
k!

dk

dzk

{
1

1− z

}

Binomial
(|z| < 1)

(1 + z)α =
∞∑

n=0

(
α

n

)
zn =

∞∑

n=0

α(α− 1)(α− 2) · · · (α− n + 1)
n!

zn

Exponential
(∀ z ∈ C)

ez =
∞∑

n=0

zn

n!
= 1 + z +

1
2
z2 +

1
6
z3 +

1
24

z4 + · · ·

Sine
(∀ z ∈ C)

sin z =
∞∑

n=0

z2n−1

(2n− 1)!
= z − 1

3!
z3 +

1
5!

z5 − 1
7!

z7 + · · ·

Cosine
(∀ z ∈ C)

cos z =
∞∑

n=0

z2n

(2n)!
= 1− 1

2!
z2 +

1
4!

z4 − 1
6!

z6 + · · ·



Special types of points

• Zeros. A zero of a nonconstant function f is a point a such that f(a) = 0. If f is holomorphic
and a is a zero of f , then we can Laurent (or Taylor!) expand f as

f(z) =
∞∑

n=m

cn(z − a)n = cm(z − a)m + cm+1(z − a)m+1 + · · · .

The smallest m ≥ 1 such that cm 6= 0 is called the order of the zero. Then the following are
equivalent:

a is a zero of order m ⇐⇒ f(a) = f ′(a) = · · · = f (m−1)(0) = 0, f (m)(0) 6= 0
⇐⇒ there exists a nonzero analytic g defined near a

s.t. f(z) = (z − a)mg(z) ∀ z near a

• Isolated singularities. A point a is an isolated singularity of f if f is not differentiable at
a, but is differentiable on a deleted neighborhood of a, i.e. an annulus of the form A(a; 0, R).
There are three types of isolated singularities classified by the behavior of f near a:

Removable: lim
z→a

f(z) = A ∈ C, so f can be made continuous at a

Pole: lim
z→a

f(z) = ∞, so f can be made continuous in C∞

Essential: lim
z→a

f(z) does not exist, so f cannot be made continuous

• Removable singularities. The following conditions are also equivalent for an isolated
singularity a of a function f :

a is removable ⇐⇒ f can be made continuous at a

⇐⇒ f is bounded on a neighborhood of a

⇐⇒ the local Laurent series at a has no singular part
⇐⇒ f can be made analytic at a

• Poles. It is easy to see that f(z) has a pole at a if and only if the reciprocal function 1
f(z)

has a removable zero at a. Hence, every pole has a corresponding order. In fact,

a is pole of order m ⇐⇒ 1/f has a removable zero of order m at a

⇐⇒ there exists a nonzero analytic g defined near a

s.t. f(z) =
g(z)

(z − a)m
∀ z near a

⇐⇒ the local Laurent series at a has finite singular part

• Essential singularities. The following are equivalent for an isolated singularity a:

a is an essential singularity ⇐⇒ the local Laurent series at a has infinite singular part
⇐⇒ for any A ∈ C∞, there exists a sequence zn

s.t. zn → a, f(zn) → A as n →∞


