Uniqueness Theorems

e The Zero Lemma. Let f : U — C be holomorphic and U be open. If the set of
points

{zeU: f(z) =0}
has a limit point z* € U, then f(z) = 0 on any neighborhood of z*. This is a power

series theorem, which has no analog for smooth real functions.

e The Uniqueness Theorem. Suppose U is a domain (i.e. open and connected) and
f,g: U — C are holomorphic. If the set

{zeU:f(z) =9(2)}

has a limit point in U, then f(z) = g(z) for every z € U. Said differently, a holomorphic
function is uniquely determined by its values on any convergent sequence of distinct
points.

e The Mean Value Property. A function f: U — C is said to have the Mean Value
Property (MVP) if the value at any point is the mean value over any circle centered
at that point, i.e. if
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for any point z* and any radius R such that B(z*, R) C U.

For complex functions, this is equivalent to satisfying the Cauchy Integral Formula on
circles only. Hence, every holomorphic function satisfies the Mean Value Property.

e Maximum Modulus Principle. A non-constant function on a domain cannot as-
sume a maximum modulus. More precisely, suppose that f : U — C is holomorphic
with U a domain. If there exists a point z* € U such that

[f()| < [f(z)] YzeU,
then f(z) = f(2*) for every point z € U.

e Consequences. The Maximum Modulus Principle has several useful corollaries:

— Boundary Value Principle. If U is a bounded domain, and f is continuous on U
and holomorphic in U, then f assumes its maximum modulus on the boundary

of U.

— Boundary determination. Suppose 7 is a Jordan curve and f, g are continuous on
and inside v. If f = g on the curve v, and f, g are holomorphic inside v, then
f = g inside .

— Minimum Modulus Principle. If U is a domain and f : U — C is holomorphic,
non-constant, and nonzero on U, then f does not attain a minimum modulus on

U.



Laurent Series

e Singular series. A singular series is a sum of the form
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The value a is called the center of the singular series. A singular series centered at
a is, essentially, nothing more than a power series in the variable (2 — a)~!. Hence,
for each power series result there is a corresponding singular series result formed by
“inversion.”.

e Radius of divergence. The radius of divergence is the value Ry > 0 such that the
singular series f(z) = Y c_n(z — a)™™ diverges for all |z — a| < R; and converges
absolutely for all |z — a| > R4. Moreover, the convergence is uniform on for |z — a| >
R > R,. The radius of divergence Ry of > c_,(z —a)™" can be found by

C—(n+1)
c_n |

R;= lim {/|c_,| or Ry= lim
n—oo n—oo

e Laurent series. A Laurent series is a doubly—inﬁnite sum of the form
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The value a is called the center of the Laurent series.

Notice that a Laurent series is just the sum of two series of functions: a singular series
at (with no constant term), called its singular part, and a power series, called its reqular
part.

e Annulus of convergence. If R. denotes the radius of convergence of the regular
part and R, the radius of divergence of the singular part, then the Laurent series
> nez Cn(z — @) converges absolutely on its annulus of convergence,

A(a; Ry, R.) :={2€C: Ry < |z—a|] <R},

and diverges in the exterior of the annulus. Moreover, the convergence is uniform in
any proper sub-annulus A(a;r, R) with Ry <7 < R < R..

¢ Differentiability. A Laurent series f(z) = ) ., cn(z — a)" is differentiable (and
integrable) in its annulus of convergence, and term-by-term operations are permissible.

e Laurent coefficients. Laurent coefficients of the series are uniquely determined by
its annulus of convergence according to the formula
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where v is any Jordan curve contained in the annulus which wraps around a.



