
Uniqueness Theorems

• The Zero Lemma. Let f : U → C be holomorphic and U be open. If the set of
points

{z ∈ U : f(z) = 0}
has a limit point z∗ ∈ U , then f(z) ≡ 0 on any neighborhood of z∗. This is a power
series theorem, which has no analog for smooth real functions.

• The Uniqueness Theorem. Suppose U is a domain (i.e. open and connected) and
f, g : U → C are holomorphic. If the set

{z ∈ U : f(z) = g(z)}
has a limit point in U , then f(z) ≡ g(z) for every z ∈ U . Said differently, a holomorphic
function is uniquely determined by its values on any convergent sequence of distinct
points.

• The Mean Value Property. A function f : U → C is said to have the Mean Value
Property (MVP) if the value at any point is the mean value over any circle centered
at that point, i.e. if
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for any point z∗ and any radius R such that B(z∗, R) ⊂ U .

For complex functions, this is equivalent to satisfying the Cauchy Integral Formula on
circles only. Hence, every holomorphic function satisfies the Mean Value Property.

• Maximum Modulus Principle. A non-constant function on a domain cannot as-
sume a maximum modulus. More precisely, suppose that f : U → C is holomorphic
with U a domain. If there exists a point z∗ ∈ U such that

∣∣f(z)
∣∣ ≤

∣∣f(z∗)
∣∣ ∀ z ∈ U,

then f(z) ≡ f(z∗) for every point z ∈ U .

• Consequences. The Maximum Modulus Principle has several useful corollaries:

– Boundary Value Principle. If U is a bounded domain, and f is continuous on U
and holomorphic in U , then f assumes its maximum modulus on the boundary
of U .

– Boundary determination. Suppose γ is a Jordan curve and f, g are continuous on
and inside γ. If f = g on the curve γ, and f, g are holomorphic inside γ, then
f ≡ g inside γ.

– Minimum Modulus Principle. If U is a domain and f : U → C is holomorphic,
non-constant, and nonzero on U , then f does not attain a minimum modulus on
U .



Laurent Series

• Singular series. A singular series is a sum of the form

f(z) =
∞∑

n=0

c−n(z − a)−n = c0 +
c−1

z − a
+

c−2

(z − a)2
+ · · · .

The value a is called the center of the singular series. A singular series centered at
a is, essentially, nothing more than a power series in the variable (z − a)−1. Hence,
for each power series result there is a corresponding singular series result formed by
“inversion.”.

• Radius of divergence. The radius of divergence is the value Rd ≥ 0 such that the
singular series f(z) =

∑
c−n(z − a)−n diverges for all |z − a| < Rd and converges

absolutely for all |z − a| > Rd. Moreover, the convergence is uniform on for |z − a| ≥
R > Rd. The radius of divergence Rd of

∑
c−n(z − a)−n can be found by
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• Laurent series. A Laurent series is a doubly-infinite sum of the form

f(z) ≡
∑

n∈Z
cn(z − a)n =

∞∑
n=−∞
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= · · ·+ c−3
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z − a︸ ︷︷ ︸
singular part

+ c0 + c1(z − a) + c2(z − a)2 + · · ·
︸ ︷︷ ︸

regular part

The value a is called the center of the Laurent series.

Notice that a Laurent series is just the sum of two series of functions: a singular series
at (with no constant term), called its singular part, and a power series, called its regular
part.

• Annulus of convergence. If Rc denotes the radius of convergence of the regular
part and Rd the radius of divergence of the singular part, then the Laurent series∑

n∈Z cn(z − a)n converges absolutely on its annulus of convergence,

A(a; Rd, Rc) := {z ∈ C : Rd < |z − a| < Rc} ,

and diverges in the exterior of the annulus. Moreover, the convergence is uniform in
any proper sub-annulus A(a; r, R) with Rd < r < R < Rc.

• Differentiability. A Laurent series f(z) =
∑

n∈Z cn(z − a)n is differentiable (and
integrable) in its annulus of convergence, and term-by-term operations are permissible.

• Laurent coefficients. Laurent coefficients of the series are uniquely determined by
its annulus of convergence according to the formula

cn =
1

2π i

∫

γ

f(ζ)

(ζ − a)n+1
dz, n = 0,±1,±2,±3, . . . ,

where γ is any Jordan curve contained in the annulus which wraps around a.


