
Series of functions

• Series of functions. Suppose that fn(z) is a complex function for n = 0, 1, 2, . . . , and the
define the function f by

f(z) :=
∞∑

j=0

fn(z) = f0(z) + f1(z) + f2(z) + · · · .

The function f converges (pointwise) on U if the series of complex numbers
∑

fn(z) converges
for each z ∈ U , i.e.

∀ε > 0, z0 ∈ U ∃K = K(ε, z0) ≥ 1 s.t. k ≥ K, =⇒
∣∣∣∣f(z0)−

k∑

n=0

fn(z0)
∣∣∣∣ < ε.

Observe that in the ε-K definition of convergence, the choice of K depends on both ε and
the specific point z0 in question. Lastly, f converges absolutely on U if the series

∑∣∣fn(z)
∣∣

converges.

• Uniform convergence. The sum f converges uniformly on U if

∀ε > 0∃K = K(ε) ≥ 1 s.t. k ≥ K, z ∈ U =⇒
∣∣∣∣f(z)−

k∑

n=0

fn(z)
∣∣∣∣ < ε.

The point is that one single value of K will work for every value of z in U . This condition
was formulated by Weierstrass to fix the proof of Cauchy’s False Theorem.

• Weierstrass M-test. Suppose fn : U → C are complex functions and

sup
z∈U

∣∣fn(z)
∣∣ ≤ Mn,

∞∑

j=0

Mn < ∞,

then
∑

fn converges uniformly and absolutely on U .

• Continuity. Suppose
∑

fn converges uniformly to f on U . If each function fn(z) is contin-
uous at z0, then f(z) is continuous at z0.

• Integrability. Suppose
∑

fn converges uniformly to f on a neighborhood U of a curve γ.
Then

∫

γ
f(z) dz =

∞∑

n=0

∫

γ
fn(z).

Notice that neither U need be simply connected not γ be closed.

• Differentiability. Suppose
∑

fn converges uniformly to f on an open ball B. If each fn is
C-differentiable on B, then f is C-differentiable on B as well. Moreover,

f (k)(z) =
∞∑

n=0

fn
(k)(z).

This theorem has no trivial analog in the real case: many more strict hypotheses are required
before the limit of real derivatives is the derivative of the limit.



Power series and analyticity

• Power series. A power series is a sum of the form

f(z) =
∞∑

n=0

cn(z − a)n = c0 + c1(z − a) + c2(z − a)2 + · · · .

The value a is called the center of the power series. Notice that every power series converges
at its center. Moreover, we have...

• Abel’s Lemma. Suppose a power series f(z) =
∑

cn(z − a)n converges for some ζ 6= a.
Then f(z) converges absolutely on the open disk B

(
a, |ζ − a|) and uniformly on every proper

subdisk.

• Radius of convergence. The radius of convergence is the value R ≥ 0 such that the series
f(z) =

∑
cn(z − a)n converges absolutely for all |z − a| < R and diverges for all |z − a| > R.

Moreover, the f(z) convergence is uniform on any proper subdisk of the maximal one.

• Hadamard’s Theorem. The radius of convergence R of
∑

cn(z − a)n can be found by

1
R

= lim
n→∞

n
√
|cn| where

1
0

= ∞,
1
∞ = 0.

• Analytic functions. A function f : U → C is analytic at a ∈ U if f can be expressed
locally at a as a power series, i.e. there exists a power series

∑
cn(z − a)n centered at a with

a positive radius of convergence R such that

f(z) ≡
∞∑

n=0

cn(z − a)n, ∀ |z − a| < R;

Such an power series is called a power series expansion of f at a. f is analytic in U if it is
analytic at each point a ∈ U .

• Analyticity implies C-differentiability. If f is analytic at a, then f is C-differentiable
on a neighborhood of a, and term-by-term differentiation (and integration) is permissable on
the neighborhood, i.e.

f ′(z) =
∞∑

n=1

n cn(z − a)n−1,

∫
f(z) dz = K +

∞∑

n=0

cn

n + 1
(z − a)n+1.

• Taylor coefficients. As a consequence of holomorphy, the coefficients cn are uniquely de-
termined by

c0 = f(a), c1 = f ′(a), c2 = 2 f ′′(a), c3 = 6 f ′′′(a), . . . , cn = n! f (n)(a).

and are called the Taylor coefficients of f at a. By the Cauchy Integral Formula, we can also
write

cn =
1

2π i

∫

γ

f(ζ)
(ζ − a)n+1

dζ

where γ is any positively-oriented Jordan curve around a.



Taylor series expansions

• Taylor series. Given any C-differentiable function f , its Taylor series at a is the power
series defined by setting cn = n! f (n)(a), i.e. the series

∞∑

n=0

f (n)(a)
n!

(z − a)n = f(a) + f ′(a)(z − a) +
f ′′(a)

2
(z − a)2 + · · · .

Observe that the power series expansion of any analytic function is precisely its Taylor series.

• C-differentiability implies analyticity. Suppose that f : U → C is C-differentiable, and
suppose that B(a,R) ⊂ U . Then f is the sum of its Taylor series, and its radius of convergence
is at least R.

• Taylor series revisited. The coefficients cn of the Taylor series
∑

cn(z − a)n of a C-
differentiable function f at a point a can also be expressed in terms of integrals, namely

cn =
1

2π i

∫

γ

f(ζ)
(ζ − z)n+1

dζ, n = 0, 1, 2, . . .

where γ is any Jordan curve around the point a.

• Consequences of equivalence. Any power series expansion of a function agrees with its
Taylor series expansion, so a series expansion can be determined either by manipulating a
known series or by taking derivatives and plugging into the Taylor formula. Similarly, the
radius of convergence can be determined either by Hadamard’s Theorem (in series form) or
as the distance to the nearest “bad point” (in function form).


