Complex series

Series. A complex series is a formal infinite sum of complex numbers
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To each series is a corresponding sequence (S,,) of partial sums, i.e.
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A series converges to the sum « if the sequence .S,, converges to «, and this is denoted
> an, = a. A series which does not converge is said to diverge.

Absolute convergence. A series Y a, converges absolutely if the real series > |a,|
converges. Absolute convergence implies convergence but not conversely; the alternat-
ing harmonic series is a counterexample. Such series are said to converge conditionally.

Manipulating series. Series can be manipulated freely provided they converge ab-
solutely. For example, if > a, and ) b, converge absolutely, then
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Rearrangements: Z a, = Z ao(n) V permutation o of 7+
= n=0

However, these are not, in general, true of conditionally convergent series.
Geometric series. The geometric series is defined by
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This converges absolutely if |a] < 1 and diverges otherwise. In fact,
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Harmonic series. The harmonic series is defined by
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This is a famously diwergent series; indeed, if S, is the n-th partial sum, then Spn > 7.



Convergence Tests

e Divergence test. If the terms a, 4 0 as n — oo, then ) a, diverges. The converse
statement — if the terms a,, — 0 as n — oo, then > a, converges — is not true; the
harmonic series is a counterexample.

e Comparison Test. Given a series ) ay, if

0 < la,| < r, and Z r, converges — Z a, converges absolutely
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e The Ratio Test. Given a series ) a,, set
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where lim denotes the lim sup, i.e. the supremum of the set of limit points of the
sequence. Then

fL<1= Z a, converges absolutely
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fL>1= Z a, diverges
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If L = 1 = no information about convergence

e The Root Test. Given a series ) a,, set

L := lim {/|ay,|,
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Then

fL<1l= Z a, converges absolutely
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ftL>1= Z a, diverges
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If L =1 = no information about convergence

e Both the Ratio and Roots Tests are obtained by comparing the series ) _ a,, to a suitable
geometric series, the workhorse of all series.



