
The Integral Theorems of complex analysis

• The proof of Cauchy’s Integral Theorem. The proof involves two steps:

– Step 1. The Cauchy-Goursat Theorem: If U is simply connected and f : U → C
is C-differentiable on U , then ∫

∆

f dz = 0

for every triangular path ∆ in U . A proof is given in the class handout for today.

– Step 2. Polygonal approximation: Any line integral can be approximated within
an ε by a line integral over a polygonal path.

Since Step 1 implies that every integral over a closed polygonal path is 0, the result
follows from Step 2.

• Application 3: Cauchy’s Integral Formula. Let U be simply connected and
f : U → C be C-differentiable. If γ is a positively-oriented Jordan curve in U around
the point z∗, then

f(z∗) =
1

2π i

∫

γ

f(z)

z − z∗
dz.

Its proof, similar to that of the Cauchy-Goursat Theorem, involves integrating the
continuity condition.

• Boundary uniqueness. A C-differentiable function is determined by its values on
the boundary. Suppose that f, g : U → C are C-differentiable and f(z) = g(z) for all
z in a Jordan curve γ in U , then in fact

f(z) ≡ g(z) ∀ z ∈ inside(γ).

• Application 4: C-Differentiability and the CIF. Let U be simply connected. A
continuous function f : U → C is C-differentiable if and only if it satisfies the Cauchy
Integral Formula. Moreover, if γ is a positively-oriented Jordan curve in U around the
point z∗, then

f ′(z∗) =
1

2π i

∫

γ

f(z)

(z − z∗)2
dz.

• Infinite differentiability. A mapping f : R2 → R2 is called infinitely differentiable,
or smooth, or of class C∞, if it has continuous partial derivatives of all orders. Clearly,
C∞ implies C1, but the converse is not, in general, true.

• C-differentiability implies smoothness. If U is simply connected and f : U → C
is C-differentiable, then f is smooth on U . Moreover, if γ is any Jordan curve around
z∗, then

f (n)(z∗) =
n!

2π i

∫

γ

f(z∗)
(z − z∗)n+1

dz.



Equivalences

Given a complex function f : U → C,
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Using the integral theorems

• Closed curves. Suppose you wish to integrate a holomorphic function f over a closed
curve γ. First, break down γ into a sum of smaller Jordan curves and integrate over
each Jordan curve separately. Then:

– Antiderivative? If f has an obvious antiderivative on any neighborhood of γ,
simply connected or not, then the FTC implies

∫
γ
f dz = 0.

– Simply connected? If f is holomorphic on a simply-connected neighborhood of γ,
then the CIT implies

∫
γ
f dz = 0.

– Lots of bad points? Use the homotopy version of CIT to write this as several
smaller circles, each about a single bad point.

– One bad point? Write f as g(z)/(z − z∗)k+1 with g holomorphic in the curve.
Then the CIF implies

∫
γ
f dz = 2π i

k!
g(k)(z∗).

– If all else fails... Parametrize the curve and do it by hand.

• Arcs. Suppose you wish to integrate a holomorphic function f over a non-closed arc
γ. Then:

– Antiderivative? If f has an antiderivative F on any neighborhood of γ, simply
connected or not, then the FTC implies

∫
γ
f dz = F (end)− F (start).

– Easier path to parametrize? Parametrize an easier path η going between the same
points calculate

∫
η
f dz. Then since γ − η is closed, you can use the techniques

above the calculate the integral over the closed loop. The subtract the integrals.

– If all else fails... Parametrize the curve and do it by hand.


