The Integral Theorems of complex analysis

e The proof of Cauchy’s Integral Theorem. The proof involves two steps:

— Step 1. The Cauchy-Goursat Theorem: If U is simply connected and f: U — C
is C-differentiable on U, then
/ fdz=0
A

for every triangular path A in U. A proof is given in the class handout for today.

— Step 2. Polygonal approximation: Any line integral can be approximated within
an € by a line integral over a polygonal path.

Since Step 1 implies that every integral over a closed polygonal path is 0, the result
follows from Step 2.

e Application 3: Cauchy’s Integral Formula. Let U be simply connected and
f U — C be C-differentiable. If v is a positively-oriented Jordan curve in U around
the point z*, then
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f(z)—% 7Z_Z*dz.

Its proof, similar to that of the Cauchy-Goursat Theorem, involves integrating the
continuity condition.

Boundary uniqueness. A C-differentiable function is determined by its values on
the boundary. Suppose that f,g: U — C are C-differentiable and f(z) = g(z) for all
z in a Jordan curve 7 in U, then in fact

f(2) =g(z) Vz € inside(y).

Application 4: C-Differentiability and the CIF. Let U be simply connected. A
continuous function f : U — C is C-differentiable if and only if it satisfies the Cauchy
Integral Formula. Moreover, if 7 is a positively-oriented Jordan curve in U around the

point z*, then
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Infinite differentiability. A mapping f : R? — R? is called infinitely differentiable,
or smooth, or of class C'**°, if it has continuous partial derivatives of all orders. Clearly,
O implies C!, but the converse is not, in general, true.

C-differentiability implies smoothness. If U is simply connected and f : U — C
is C-differentiable, then f is smooth on U. Moreover, if v is any Jordan curve around

z*, then
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Given a complex function f: U — C,
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Using the integral theorems

e Closed curves. Suppose you wish to integrate a holomorphic function f over a closed
curve 7. First, break down v into a sum of smaller Jordan curves and integrate over

each Jordan curve separately. Then:

— Antiderivative? If f has an obvious antiderivative on any neighborhood of -,
simply connected or not, then the FTC implies fv fdz=0.

— Simply connected? If f is holomorphic on a simply-connected neighborhood of ~,

then the CIT implies f,y fdz=0.

— Lots of bad points? Use the homotopy version of CIT to write this as several
smaller circles, each about a single bad point.

— One bad point? Write f as g(z)/(z — 2*)*! with g holomorphic in the curve.
Then the CIF implies [ fdz = 2 gk (27).

— If all else fails... Parametrize the curve and do it by hand.

e Arcs. Suppose you wish to integrate a holomorphic function f over a nmon-closed arc

~. Then:

— Antiderivative? If f has an antiderivative F' on any neighborhood of 7, simply
connected or not, then the FTC implies f7 fdz = F(end) — F(start).

— FEasier path to parametrize? Parametrize an easier path n going between the same
points calculate [ fdz. Then since 7 — 7 is closed, you can use the techniques
above the calculate the integral over the closed loop. The subtract the integrals.

— If all else fails... Parametrize the curve and do it by hand.



