The complex elementary functions

e The complex exponential. The complex exponential is defined by
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cos(Im z) + isin(Im z)).

This function is holomorphic on C and satisfies the properties
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In particular, the complex exponential is periodic with imaginary period 27 <.

e The complex logarithm. A complex logarithm is defined to be any inverse of the
exponential e*, i.e. any function w = log(z) which satisfies e = z. Since e? is periodic,
there are infinitely many ways to define a logarithm which differ by multiplies of 27 4,
which is precisely the period of e*. However, any logarithm takes the form

log(z) = In|z| + i arg(z) + i(27k,), k, €Z.

If we have a logarithm log(z) define on an open set U, then it is called a branch of the
logarithm if it is continuous on U. In fact, any branch of the logarithm is holomorphic
with derivative
1

diz{ log(2)} = pt
Observe that the domain U of a branch of the logarithm cannot contain 0 (since e* # 0
for any z); moreover, a maximal domain consists of a branch cut of points (starting at
0) in C removed from the domain of definition.

e The principal branch of the logarithm. If we restrict the argument to the principal
argument, then we can define the principal branch of the logarithm by

Log(z) := In|z| +i arg,(2), —7 < arg,(z) <.

Notice that Log(z) is not continuous across its branch cut line {x < 0}. For example,
if we approach the number z = —1 from Quadrant II, then Log(z) — im; however, if
we approach from Quadrant III, then Log(z) — —im. This kind of behavior, having
the logarithm differ by a multiple of 27 ¢ on either side of the branch cut, is common
to all logarithms. A consequence of this is that, in general,

log(z w) # log(z) + log(w), log(z") # n log(z).

e The complex sine and cosine. We define the two basic complex trigonometric
functions as follows
eiz + e—iz eiz _ e—iz

cos(z) 1= — sin(z) := 5;
i

This implies that sine and cosine are holomorphic functions on C, and satisfies the
usual properties
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E{ cos(z)} = —sin(z), @{ sin(z) } = cos(z), sin(z) + cos(z) = 1.



Cauchy’s Theorem and its consequences

e Where we left off... On Friday, we used Green’s Theorem to prove the following: if
U c C is a simply connected domain and f : U — C is holomorphic, then
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for any Jordan curve v in U. It turns out that the hypotheses that f be C* and that
v be a non-self-intersecting Jordan curve can be eliminated:

e Cauchy’s Integral Theorem. If U C C is a simply connected domain and f : U — C
is C-differentiable, then
/ fdz=0
.

for any closed curve v in U, i.e. f is conservative on U.

e Application 1: Complex FTC (Part II). If f is C-differentiable on a simply
connected domain U and zy € U is arbitrary, then

F(z) = / £(0) dc,
v[20,2]

where 720, 2] denotes any path in U beginning at 2, and ending at z, defines a C-
differentiable function with derivative f(z). Moreover, if F' is another antiderivative,
then

F(z)=F(2)+C

for some complex constant C'. Note that, unlike the real case, the mere continuity of
f is insufficient to guarantee that a complex antiderivative.

e Logarithms as antiderivatives. The set U = C\ {z < 0} is simply connected, and
1/z is holomorphic in it. Hence, the FTC guarantees that 1/z has an antiderivative
on it. In fact, the usual antiderivative is the principal branch of the logarithm:

Log(z) = / %dg, zeU.

~v[1,z]cU

e Application 2: Homotopy version. Suppose that v and n are Jordan curves, both
oriented positively, and suppose that i C inside(ry). Let R be the region “between” the
curves, i.e. R is the closure of the domain inside(y) Noutside(n). If a complex function
f is C-differentiable on a neighborhood of R, i.e. C-differentiable on the “in-between”
domain and at every point on either curve v or 7, then

/fdz:/fdz.

This allows us to exchange complicated closed paths for simpler closed paths when
they enclose “bad” points of a function. This theorem also applies to the case when
there are several disjoint, positively-oriented Jordan curves inside 7.



