
Derivatives and integrals over curves

• Infinitesimal amplitwists. If f is C-differentiable at z0, then f acts locally near
f(z0) as a multiplication by f ′(z0). Said differently, close to z0 and f(z0), the function
f acts as an amplitwist through f ′(z0): the plane rotates about f(z0) through an angle
of arg f ′(z0) with a scaling factor of |f ′(z0)|.

• Tangents to curves. A curve σ = (x, y) : [a, b] → C is differentiable at t0 if each real-
valued component function x(t), y(t) is differentiable at t0. In this case, the derivative

dσ

dt
(t0) =

dx

dt
(t0) + i

dy

dt
(t0) or σ′(t0) = x′(t0) + i y′(t0)

is called the tangent vector to σ at t0, and is graphically drawn at the point σ(t0).

• Curves and differentiable functions. If σ : [a, b] → U is an arc and f : U → C is
C-differentiable, then the derivative of the composite arc γ := f ◦ σ is

dγ

dt

′
(t0) =

∂f

∂z

(
σ(t0)

)dσ

dt
(t0) or γ′(t0) = f ′

(
σ(t0)

)
σ′(t0).

• Conformality. A function is called angle-preserving (or isogonal) at z if, whenever
two curves γ and σ meet at an angle θ (i.e. their tangent vectors meet at an angle of
θ) at z, then the composite curves f ◦ γ and f ◦ σ meet at the same angle θ at f(z).
It is called conformal if it additionally preserves the orientation of the tangents, and
anticonformal if it reverses them.

• C-differentiability versus conformality. If a complex function f is C-differentiable
at z0 with f ′(z0) 6= 0, then f is conformal at z0. Conversely, if f is both R-differentiable
and conformal at z0, then it is C-differentiable at z0.

• (Anti)Holomorphy versus (anti)conformality. A C1 function f is holomorphic
at z0 with ∂f

∂z
(z0) 6= 0 if and only if f is conformal at z0. Similarly, a C1 function f is

antiholomorphic at z0 with ∂f
∂z

(z0) 6= 0 if and only if f is anticonformal at z0.

• Line integrals. Let f : U → C be a complex function and γ a smooth curve from α
to β. The complex line integral of f over γ is the limit

∫

γ

f dz := lim
λ→0

n∑

k=0

f(ζk)∆zk,

provided the limit exists. Here α = z0, z1, z2, . . . , zn = β are points of γ arranged in
the positive order, ζk is a point of γ on the arc between zk−1 and zk, ∆zk = zk − zk−1,
and λ is the maximum length of the n subarcs.



Complex line integrals

• Properties of line integrals. If f is continuous, then∫

γ

f dz =

∫

γ

(u + i v)(dx + i dy) =

∫

γ

u dx− v dy + i

∫

γ

v dx + u dy,

which is the (complex) sum of two real line integrals over γ. Hence, the complex line
integral has the same basic properties as the real line integral: linearity, independence
of parametrization, dependence on orientation, etc. An important inequality for the
modulus of an integral also extends:∣∣∣∣

∫

γ

f dz

∣∣∣∣ ≤
∫

γ

∣∣f |
∣∣dz

∣∣ =:

∫

γ

|f | ds ≤ max
z∈γ

∣∣f(z)
∣∣× length(γ).

• Smooth curves. An arc γ is called smooth if it can be parametrized by a path z(t) :
[a, b] → C with z′(t) 6= 0 for any t ∈ (a, b). If a smooth arc γ has a parametrization
z = z(t) : [a, b] → C, then

∫

γ

f dz =

∫ b

a

f
(
z(t)) z′(t) dt.

• Complex FTC (Part I): If f has a complex antiderivative F defined an open set U .
If γ is any arc in U from α to β, then∫

γ

f dz = F (β)− F (α).

In particular, the actual arc γ is immaterial — only the endpoints matter. As a
consequence, if f has different line integrals over two different paths γ and η connecting
the same two points, then f cannot have an antiderivative on any neighborhood of γ∪η.

• Conservative functions. A complex function f : U → C is called conservative on U
if ∫

γ

f dz = 0

for every closed curve γ in U .

• Green’s Theorem: This is a Calculus III result, which states that if (P,Q) : U → R2

is a C1 vector field and γ is a Jordan curve in U , then
∫

γ

P dx + Qdy =

∫∫

inside(γ)

{
∂Q

∂x
− ∂P

∂y

}
dx dy.

• Cauchy’s Integral Theorem: If U is simply connected and f : U → C is holomor-
phic, then ∫

γ

f dz = 0

for every Jordan curve γ in U .


