Derivatives and integrals over curves

- Infinitesimal amplitwists. If f is \mathbb{C} -differentiable at z_0 , then f acts locally near $f(z_0)$ as a multiplication by $f'(z_0)$. Said differently, close to z_0 and $f(z_0)$, the function f acts as an amplitwist through $f'(z_0)$: the plane rotates about $f(z_0)$ through an angle of arg $f'(z_0)$ with a scaling factor of $|f'(z_0)|$.
- Tangents to curves. A curve $\sigma = (x, y) : [a, b] \to \mathbb{C}$ is differentiable at t_0 if each realvalued component function x(t), y(t) is differentiable at t_0 . In this case, the derivative

$$\frac{d\sigma}{dt}(t_0) = \frac{dx}{dt}(t_0) + i\frac{dy}{dt}(t_0) \quad \text{or} \quad \sigma'(t_0) = x'(t_0) + iy'(t_0)$$

is called the *tangent vector* to σ at t_0 , and is graphically drawn at the point $\sigma(t_0)$.

• Curves and differentiable functions. If $\sigma : [a, b] \to U$ is an arc and $f : U \to \mathbb{C}$ is \mathbb{C} -differentiable, then the derivative of the composite arc $\gamma := f \circ \sigma$ is

$$\frac{d\gamma'}{dt}(t_0) = \frac{\partial f}{\partial z} (\sigma(t_0)) \frac{d\sigma}{dt}(t_0) \quad \text{or} \quad \gamma'(t_0) = f'(\sigma(t_0)) \sigma'(t_0).$$

- Conformality. A function is called *angle-preserving* (or *isogonal*) at z if, whenever two curves γ and σ meet at an angle θ (i.e. their tangent vectors meet at an angle of θ) at z, then the composite curves $f \circ \gamma$ and $f \circ \sigma$ meet at the same angle θ at f(z). It is called *conformal* if it additionally preserves the orientation of the tangents, and *anticonformal* if it reverses them.
- \mathbb{C} -differentiability versus conformality. If a complex function f is \mathbb{C} -differentiable at z_0 with $f'(z_0) \neq 0$, then f is conformal at z_0 . Conversely, if f is both \mathbb{R} -differentiable and conformal at z_0 , then it is \mathbb{C} -differentiable at z_0 .
- (Anti)Holomorphy versus (anti)conformality. A C^1 function f is holomorphic at z_0 with $\frac{\partial f}{\partial z}(z_0) \neq 0$ if and only if f is conformal at z_0 . Similarly, a C^1 function f is antiholomorphic at z_0 with $\frac{\partial f}{\partial \overline{z}}(z_0) \neq 0$ if and only if f is anticonformal at z_0 .
- Line integrals. Let $f: U \to \mathbb{C}$ be a complex function and γ a smooth curve from α to β . The complex line integral of f over γ is the limit

$$\int_{\gamma} f \, dz := \lim_{\lambda \to 0} \sum_{k=0}^{n} f(\zeta_k) \Delta z_k,$$

provided the limit exists. Here $\alpha = z_0, z_1, z_2, \ldots, z_n = \beta$ are points of γ arranged in the positive order, ζ_k is a point of γ on the arc between z_{k-1} and z_k , $\Delta z_k = z_k - z_{k-1}$, and λ is the maximum length of the *n* subarcs.

Complex line integrals

• Properties of line integrals. If f is continuous, then

$$\int_{\gamma} f \, dz = \int_{\gamma} (u+iv)(dx+i\,dy) = \int_{\gamma} u\,dx - v\,dy + i\int_{\gamma} v\,dx + u\,dy,$$

which is the (complex) sum of two *real* line integrals over γ . Hence, the complex line integral has the same basic properties as the real line integral: linearity, independence of parametrization, dependence on orientation, etc. An important inequality for the modulus of an integral also extends:

$$\left| \int_{\gamma} f \, dz \right| \leq \int_{\gamma} \left| f \right| \left| dz \right| =: \int_{\gamma} \left| f \right| \, ds \leq \max_{z \in \gamma} \left| f(z) \right| \times \operatorname{length}(\gamma).$$

• Smooth curves. An arc γ is called *smooth* if it can be parametrized by a path z(t): $[a,b] \to \mathbb{C}$ with $z'(t) \neq 0$ for any $t \in (a,b)$. If a smooth arc γ has a parametrization $z = z(t) : [a,b] \to \mathbb{C}$, then

$$\int_{\gamma} f \, dz = \int_{a}^{b} f(z(t)) \, z'(t) \, dt.$$

• Complex FTC (Part I): If f has a complex antiderivative F defined an open set U. If γ is any arc in U from α to β , then

$$\int_{\gamma} f \, dz = F(\beta) - F(\alpha).$$

In particular, the actual arc γ is immaterial — only the endpoints matter. As a consequence, if f has different line integrals over two different paths γ and η connecting the same two points, then f cannot have an antiderivative on any neighborhood of $\gamma \cup \eta$.

• Conservative functions. A complex function $f: U \to \mathbb{C}$ is called *conservative* on U if

$$\int_{\gamma} f \, dz = 0$$

for every closed curve γ in U.

• Green's Theorem: This is a Calculus III result, which states that if $(P,Q): U \to \mathbb{R}^2$ is a C^1 vector field and γ is a Jordan curve in U, then

$$\int_{\gamma} P \, dx + Q \, dy = \iint_{\mathbf{inside}(\gamma)} \left\{ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right\} dx \, dy.$$

• Cauchy's Integral Theorem: If U is simply connected and $f: U \to \mathbb{C}$ is holomorphic, then

$$\int_{\gamma} f \, dz = 0$$

for every Jordan curve γ in U.