
The topology of C

Given a set E ⊂ C and a point z ∈ C:

• z is in the interior of E, denoted z ∈ E◦, if z has a neighborhood contained in E.

• z is in the exterior of E if z has a neighborhood disjoint from E.

• z is on the boundary of E, denoted z ∈ ∂E, if every neighborhood of z intersects E
and its complement.

• E is open if every point of E is an interior point, i.e. E = E◦.

• E is closed if E contains its boundary, i.e. ∂E ⊂ E.

• The closure of E is the closed set E := E ∪ ∂E.

• E is connected if there does not exist disjoint open sets U, V such that the following
holds: E ⊂ U ∪ V , E ∩ U 6= ∅, and E ∩ V 6= ∅.

• E is compact if every covering of E by neighborhoods admits a finite subcovering.
Equivalently, by the Heine-Borel Theorem, E is closed and bounded.

• E is a domain if E is connected and open. Any set R such that E ⊂ R ⊂ E is called
a region.

• A path in E is a continuous vector-valued function σ : [a, b] → E ⊂ R2. The image of
the path is called an arc (or curve) in E. If in addition σ(a) = σ(b), the curve is called
closed.

• E is arcwise connected if for any points z, w ∈ E there exists an arc with endpoints at
z and w. Note that every arcwise connected set is connected; the converse holds if the
set is also open.

• A closed curve σ : [a, b] → C that satisfies the additional condition that σ(t1) = σ(t2)
iff t1 = a and t2 = b is called a Jordan curve. The Jordan Curve Theorem states
that the complement of such a curve consists of two domains, one bounded (called the
inside of the curve), and one unbounded (called the outside).

• A connected set E is called simply connected if the inside of every Jordan curve in
E is contained in E. Intuitively, a set is simply connected if it contains no holes or
punctured points.

It is worthwhile to note that the complex topology of C is precisely the Euclidean topology of
R2. Hence, any topological theorem about R2 is also a topological theorem (under a change
of notation) for C.



Complex functions C

• Complex functions. A complex function f on a set E ⊂ C, denoted f : E → C, is a
rule which assigns to each complex number z ∈ E a unique complex number f(z) ∈ C.
The set E is called the domain of definition of f .

• Complex functions as mappings. Notice that any complex function is the sum of
two real-valued functions on E,

u(z) := Re f(z), v(z) := Im f(z).

Hence, any complex function f = u + i v can be viewed as a vector field f = (u, v) on
R2, i.e. a vector-valued mapping defined on a subset of R2.

• Visualizing complex functions. There are four main ways to visualize a complex
function f = u + i v:

– Transformation picture: sketch two copies of the complex plane showing how a
general domain is transformed under the function f .

– Vector field plot: in the plane, draw at each point z the vector f(z). This is useful
in physics applications.

– Modular plot: in 3-space, graph the real-valued function |f(z)|. This is useful
when checking continuity.

– Graph pairs: in 3-space, plot separately the graphs of u(z) and v(z).

• Limits. We say that a complex function f : E → C approaches A at the point ζ ∈ C,
denoted

f(z) → A as z → ζ or lim
z→ζ

f(z) = A,

if the values of f can be made arbitrarily close to A provided z is sufficiently close to
ζ, i.e.

∀ε > 0 ∃δ > 0 s.t. 0 < |z − ζ| < δ, z ∈ E =⇒
∣∣f(z)− A

∣∣ < ε.

This is equivalent to the following sequential formulation: the sequence f(zn) converges
to A for every sequence (zn) ⊂ E which converges to ζ.

• Continuity. A function f : E → C is continuous at the point z0 ∈ E if

lim
z→z0

f(z) = f(z0).

If f is continuous at every point of E, then f is continuous in E. Observe that the
complex function f is continuous at z0 if and only both real functions Re f and Im f
are continuous at z0.



Complex infinity

• The extended plane. The extended complex plane is the set C∞ := C ∪ {∞}. The
set

B(∞, δ) :=

{
z ∈ C : |z| > 1

δ

}
∪ {∞}

is called the neighborhood of infinity of radius δ. This set without the point ∞ – which
is a subset of C – is called a deleted neighborhood of infinity, and is also denoted by
B(∞, δ). Observe that this implies that C∞ is the one-point compactification of C.

• Sequences in the extended plane. A sequence (zn) in C∞ converges to the point
ζ ∈ C∞ if

∀ε > 0∃N ∈ N s.t. n ≥ N =⇒ zn ∈ B(ζ, δ).

Observe that if ζ ∈ C, then this definition coincides with the standard definition. On
the other hand, if ζ = ∞, this means that the terms |zn| eventually grow arbitrarily
large.

• Limits in the extended plane. We say that a function f : E → C approaches
A ∈ C∞ at the point ζ ∈ C∞ if

∀ε > 0∃δ > 0 s.t. z ∈ B(ζ, δ), z ∈ E \ {ζ} =⇒ f(z) ∈ B(A, ε).

Observe that if ζ ∈ C, then this definition coincides with the standard definition.

However, if ζ = ∞, this means that the values f(z) are arbitrarily close to A if |z| is
sufficiently large; in this case, we write f(∞) = A. Similarly, if A = ∞, this means that
|f(z)| is arbitrarily large is z is sufficiently close to ζ; in this case, we write f(ζ) = ∞.

• The Riemann Sphere. The set C∞ is homeomorphic to the unit sphere S2. An
explicit homeomorphism is given by the stereographic projection of the sphere S2 onto
the plane C. In this projection, ∞ is mapped to the north pole, and convergence in
C∞ is equivalent to convergence in S2, viewed as a subset of R3.


