The topology of \mathbb{C}

Given a set $E \subset \mathbb{C}$ and a point $z \in \mathbb{C}$:

- z is in the *interior* of E, denoted $z \in E^{\circ}$, if z has a neighborhood contained in E.
- z is in the *exterior* of E if z has a neighborhood disjoint from E.
- z is on the *boundary* of E, denoted $z \in \partial E$, if every neighborhood of z intersects E and its complement.
- E is open if every point of E is an interior point, i.e. $E = E^{\circ}$.
- E is closed if E contains its boundary, i.e. $\partial E \subset E$.
- The closure of E is the closed set $\overline{E} := E \cup \partial E$.
- *E* is *connected* if there does not exist disjoint open sets U, V such that the following holds: $E \subset U \cup V$, $E \cap U \neq \emptyset$, and $E \cap V \neq \emptyset$.
- E is *compact* if every covering of E by neighborhoods admits a finite subcovering. Equivalently, by the Heine-Borel Theorem, E is closed and bounded.
- E is a domain if E is connected and open. Any set R such that $E \subset R \subset \overline{E}$ is called a region.
- A path in E is a continuous vector-valued function $\sigma : [a, b] \to E \subset \mathbb{R}^2$. The image of the path is called an arc (or curve) in E. If in addition $\sigma(a) = \sigma(b)$, the curve is called closed.
- E is arcwise connected if for any points $z, w \in E$ there exists an arc with endpoints at z and w. Note that every arcwise connected set is connected; the converse holds if the set is also open.
- A closed curve $\sigma : [a, b] \to \mathbb{C}$ that satisfies the additional condition that $\sigma(t_1) = \sigma(t_2)$ iff $t_1 = a$ and $t_2 = b$ is called a *Jordan curve*. The Jordan Curve Theorem states that the complement of such a curve consists of two domains, one bounded (called the *inside* of the curve), and one unbounded (called the *outside*).
- A connected set *E* is called *simply connected* if the inside of every Jordan curve in *E* is contained in *E*. Intuitively, a set is simply connected if it contains no holes or punctured points.

It is worthwhile to note that the complex topology of \mathbb{C} is *precisely* the Euclidean topology of \mathbb{R}^2 . Hence, any topological theorem about \mathbb{R}^2 is also a topological theorem (under a change of notation) for \mathbb{C} .

Complex functions \mathbb{C}

- Complex functions. A complex function f on a set $E \subset \mathbb{C}$, denoted $f : E \to \mathbb{C}$, is a rule which assigns to each complex number $z \in E$ a unique complex number $f(z) \in \mathbb{C}$. The set E is called the *domain of definition* of f.
- Complex functions as mappings. Notice that any complex function is the sum of two real-valued functions on *E*,

$$u(z) := \operatorname{Re} f(z), \qquad v(z) := \operatorname{Im} f(z).$$

Hence, any complex function f = u + iv can be viewed as a vector field f = (u, v) on \mathbb{R}^2 , i.e. a vector-valued mapping defined on a subset of \mathbb{R}^2 .

- Visualizing complex functions. There are four main ways to visualize a complex function f = u + iv:
 - Transformation picture: sketch two copies of the complex plane showing how a general domain is transformed under the function f.
 - Vector field plot: in the plane, draw at each point z the vector f(z). This is useful in physics applications.
 - Modular plot: in 3-space, graph the real-valued function |f(z)|. This is useful when checking continuity.
 - Graph pairs: in 3-space, plot separately the graphs of u(z) and v(z).
- Limits. We say that a complex function $f: E \to \mathbb{C}$ approaches A at the point $\zeta \in \mathbb{C}$, denoted

$$f(z) \to A$$
 as $z \to \zeta$ or $\lim_{z \to \zeta} f(z) = A$,

if the values of f can be made arbitrarily close to A provided z is sufficiently close to ζ , i.e.

$$\forall \epsilon > 0 \, \exists \delta > 0 \quad \text{s.t.} \quad 0 < |z - \zeta| < \delta, \, z \in E \Longrightarrow |f(z) - A| < \epsilon.$$

This is equivalent to the following sequential formulation: the sequence $f(z_n)$ converges to A for every sequence $(z_n) \subset E$ which converges to ζ .

• Continuity. A function $f: E \to \mathbb{C}$ is *continuous* at the point $z_0 \in E$ if

$$\lim_{z \to z_0} f(z) = f(z_0).$$

If f is continuous at every point of E, then f is continuous in E. Observe that the complex function f is continuous at z_0 if and only both real functions Re f and Im f are continuous at z_0 .

Complex infinity

• The extended plane. The extended complex plane is the set $\mathbb{C}_{\infty} := \mathbb{C} \cup \{\infty\}$. The set

$$B(\infty,\delta):=\left\{z\in\mathbb{C}:|z|>\frac{1}{\delta}\right\}\cup\{\infty\}$$

is called the *neighborhood* of infinity of radius δ . This set without the point ∞ – which is a subset of \mathbb{C} – is called a *deleted neighborhood* of infinity, and is also denoted by $B(\infty, \delta)$. Observe that this implies that \mathbb{C}_{∞} is the *one-point compactification* of \mathbb{C} .

• Sequences in the extended plane. A sequence (z_n) in \mathbb{C}_{∞} converges to the point $\zeta \in \mathbb{C}_{\infty}$ if

$$\forall \epsilon > 0 \exists N \in \mathbb{N} \quad \text{s.t.} \quad n \ge N \Longrightarrow z_n \in B(\zeta, \delta).$$

Observe that if $\zeta \in \mathbb{C}$, then this definition coincides with the standard definition. On the other hand, if $\zeta = \infty$, this means that the terms $|z_n|$ eventually grow arbitrarily large.

• Limits in the extended plane. We say that a function $f : E \to \mathbb{C}$ approaches $A \in \mathbb{C}_{\infty}$ at the point $\zeta \in \mathbb{C}_{\infty}$ if

 $\forall \epsilon > 0 \exists \delta > 0 \quad \text{s.t.} \quad z \in B(\zeta, \delta), \, z \in E \setminus \{\zeta\} \Longrightarrow f(z) \in B(A, \epsilon).$

Observe that if $\zeta \in \mathbb{C}$, then this definition coincides with the standard definition.

However, if $\zeta = \infty$, this means that the values f(z) are arbitrarily close to A if |z| is sufficiently large; in this case, we write $f(\infty) = A$. Similarly, if $A = \infty$, this means that |f(z)| is arbitrarily large is z is sufficiently close to ζ ; in this case, we write $f(\zeta) = \infty$.

• The Riemann Sphere. The set \mathbb{C}_{∞} is homeomorphic to the unit sphere S^2 . An explicit homeomorphism is given by the stereographic projection of the sphere S^2 onto the plane \mathbb{C} . In this projection, ∞ is mapped to the north pole, and convergence in \mathbb{C}_{∞} is equivalent to convergence in S^2 , viewed as a subset of \mathbb{R}^3 .