
Final Exam Solutions

Problem A [1994]: Suppose the coefficients of the power series

f(z) =
∞∑

n=0

an zn

satisfy the recurrence relation

a0 = 1, a1 = −1, 3an + 4an−1 − an−2 = 0 for n ≥ 2.

Find the radius of convergence and the function to which it converges.

Let us first show that this series does have a appositive radius of convergence R, so that
it does converge to some analytic function on an open neighborhood of 0. To do this, it
suffices to show that |an| ≤ 2n for all n, since this implies

lim
n→∞

n
√
|an| ≤ lim

n→∞
n
√

2n = 2,

which would imply by Hadamard’s Theorem that R > 1
2
. The inequality follows by a quick

induction, for |a0| = 20 and |a1| < 21, and (assuming the inductive hypothesis holds)

|an| =
∣∣∣∣
an−2 − 4an−1

3

∣∣∣∣ ≤
1

3

(|an−2|+ 4|an−1|
) ≤ 1

3

(
2n−2 + 4 · 2n−1)

= 2n−2 1 + 8

3
= 3 · 2n−2 < 4 · 2n−2 = 2n.

Thus, the series converges with some positive radius R. To determine R precisely, let us
first find what the series sums to. Since the convergence is absolute, we can multiply and
rearrange our series to obtain:

f(z) =
∞∑

n=0

an zn, z f(z) =
∞∑

n=1

an−1 zn, z2 f(z) =
∞∑

n=2

an−2 zn.

Thus,

3 f(z) + 4z f(z)− z2 f(z) = 3(a0 + a1 z) + 4(a0 z) +
∞∑

n=2

(
2an + 4an−1 − an−2

)
zn

= 3(a0) + (3a1 + 4a0)z +
∞∑

n=2

0.

Consequently, we find

(3 + 4z − z2)f(z) = 3(1) + (−3 + 4)z =⇒ f(z) =
3 + z

3 + 4z − z2
.

Returning to the radius of convergence, it is the minimum distance from the center of the
series 0 to the nearest singularity of f . Since the denominator of f vanishes at z = 2 +

√
7

and z = 2−√7, we conclude

R = min
{|2 +

√
7|, |2−

√
7|} =

√
7− 2.

(Observe that R ≈ 0.65, which is indeed greater than the initial estimate of 1/2.)



Problem B [1977]: Let f be an analytic function whose Taylor series for |z| < 1 is
1 + 2z + 3z2 + · · · . Define the sequence of real numbers a0, a1, a2, . . . by the formula

f(z) =
∞∑

n=0

an(z + 2)n.

Calculate the an and determine the radius of convergence of

g(z) =
∞∑

n=0

an zn?

Consider the geometric series

g(z) = 1 + z + z2 + z3 + · · · = 1

1− z
,

which converges absolutely for |z| < 1. Since term-by-term differentiation is valid inside the
radius of convergence, we find

g′(z) = 1 + 2z + 3z2 + 4z3 + · · ·
which agrees with our initial series, whence

f(z) = g′(z) =
d

dz

{
1

1− z

}
=

1

(1− z)2
.

Next, observe that the an are merely the coefficients of the Taylor series expansion of
f(z) at the point z = −2. Note that (by induction)

f ′(z) =
2

(1− z)3
, f ′′(z) =

3 · 2
(1− z)4

, . . . , f (n)(z) =
(n + 1)!

(1− z)n+2
,

we calculate that

an =
1

n!
f (n)(−2) =

1

n!

(n + 1)!

3n+2
=

n + 1

3n+2
.

Lastly, consider the power series g(z) =
∑

an zn. Since f(z) =
∑

an(z+2)n, we conclude
by the uniqueness of analytic functions that

g(z) =
∞∑

n=0

an zn = f(z − 2) =
1

(3− z)2
.

Hence, the only singularity of g occurs at z = 3, whence the radius of convergence for g is 3.
Alternatively, observe that

∣∣∣∣
an+1

an

∣∣∣∣ =
n + 2

3n+3
· 3n+2

n + 1
=

1

3

n + 2

n + 1
→ 1

3
as n →∞,

we conclude again that R = 1/(1
3
) = 3.



Problem C [1990]: Suppose f and g are analytic in the entire complex plane, and suppose
that

∣∣f(z)
∣∣ ≤

∣∣g(z)
∣∣ for every z ∈ C. Prove that there is a complex constant A such that

f(z) = Ag(z) for all z.

Notice that if g(z) ≡ 0, then the inequality implies f(z) ≡ 0 as well, and the result holds
for any choice of A. Hence, let us assume that g is not identically zero.

Define the function

h(z) =
f(z)

g(z)
.

Observe that h is analytic on C except for isolated singularities, namely, the (isolated) zeros
of g(z). Moreover, if z is not a singularity, we have

∣∣h(z)
∣∣ =

|f(z)|
|g(z)| ≤ 1. (1)

We claim that these are removable singularities for h(z). To see this, let z0 be a singularity
of h, i.e. a zero of g. As this zero is isolated, there exists a deleted neighborhood B =
A(z0; 0, R) of z0 on which g is nonzero. But then equation (1) holds for every z ∈ B. This
implies that z0 is neither a pole nor essential, since either of those conditions implies f is
unbounded in any neighborhood of z0. Hence, z0 must be removable.

Consequently, h can be made continuous and analytic at each removable singularity z0,
and so h is thus analytic on the whole of C. Moreover, since equation (refeqn:1) holds for
every non-singularity, continuity implies (refeqn:1) holds at each singularity too.

Thus, h is everywhere bounded by 1. But Liouville’s Theorem asserts that h must
therefore be a constant function, say h(z) ≡ A. This implies that

f(z) ≡ Ag(z),

where equality holds for all points at which g(z) 6= 0. But since g(z) = 0 implies f(z) = 0,
we have equality at all points of C.



Problem D [1978]: Let f(z) = u(z) + i v(z) be analytic in {|z| < 1}. If f(0) = 0, then
show that

∫ 2π

0

u(r eiθ)2 dθ =

∫ 2π

0

v(r eiθ)2 dθ

for any 0 < r < 1.

Since f is analytic, so too is f 2. Thus, according to the Cauchy Integral Formula,

0 = f(0)2 =
1

2π i

∫

|z|=r

f(z)2

z − 0
dz

for any 0 < r < 1.
Using the parametrization z(θ) = r eiθ for 0 ≤ θ ≤ 2π, we find

0 =
1

2π i

∫ 2π

0

f(r eiθ)2

r eiθ
r i eiθ dθ =

1

2π

∫ 2π

0

f(r eiθ)2 dθ.

(Astute eyes will recognize this as just the Mean Value Property applied to the analytic
function f 2.) Multiplying through by 2π yields

0 =

∫ 2π

0

f(r eiθ)2 dθ.

Now, if u and v denote the real and imaginary parts of f , then

f 2 = (u + i v)(u + i v) = (u2 − v2) + 2uv i,

whence

0 =

∫ 2π

0

(
u(r eiθ)2 − v(r eiθ)2

)
+ 2u(r eiθ)v(r eiθ) i dθ

=

∫ 2π

0

u(r eiθ)2 − v(r eiθ)2dθ + 2i

∫ 2π

0

u(r eiθ)v(r eiθ) dθ.

Since u and v are real-valued, the two integrals above are real numbers. Thus, equating
real parts yields

0 =

∫ 2π

0

u(r eiθ)2 − v(r eiθ)2dθ =

∫ 2π

0

u(r eiθ)2 dθ −
∫ 2π

0

v(r eiθ)2dθ,

which completes the proof.
As a bonus, equating the imaginary parts gives us another cool result, namely

∫ 2π

0

u(r eiθ) v(r eiθ) dθ = 0.



Problem E [1979]: For what z ∈ C does the series below converge? To what function does
the series converge?

∞∑
n=0

(
zn

n!
+

n

zn

)

Observe this is a Laurent series: the sum of a power series and a singular series. Hence,
this series will converge for z ∈ C if and only if both the power series (regular part) converges
at z and the singular series converges at z.

Observe that the regular part is

∞∑
n=0

1

n!
zn.

This is precisely the Taylor series of the complex exponential ez. As this is an entire function
with no singularities, its radius of convergence is infinite. Alternatively, note that

∣∣∣∣
cn+1

cn

∣∣∣∣ =
1

(n + 1)!
· n!

1
=

1

n + 1
→ 0 as n →∞,

whence R = 1/0 = ∞.
On the other hand, the singular part is

∞∑
n=1

n

zn
=

1

z
+

2

z2
+

3

z3
+ · · · .

Recall from Problem B that

∞∑
n=0

(n + 1)zn = 1 + 2z + 3z2 + 4z3 + · · · = 1

(1− z)2
,

and this converges for |z| < 1. Hence, if |z| > 1, then

1

z
· 1(

1− 1
z

)2 =
1

z
+

2

z2
+

1

z3
+ · · · ,

whence the singular part sums to

1

z
· 1(

1− 1
z

)2 =
z

(1− z)2

and converges for |z| > 1.
Thus, the Laurent series sums to

ez +
z

(1− z)2

and converges on the annulus for |z| < 1.



Problem F [1978]: Show there is a complex analytic function defined on the set U =
{|z| > 4} whose derivative is

z

(z − 1)(z − 2)(z − 3)
.

Is there an analytic function on U whose derivative is

z2

(z − 1)(z − 2)(z − 3)
?

Let us set f(z) = z(z− 1)−1(z− 2)−2(z− 3)−1. Since f is analytic in the annulus |z| > 4,
it has a Laurent expansion there. Using partial fractions, we find that

f(z) =
1

2

1

z − 1
− 2

1

z − 2
+

3

2

1

z − 3
.

Now, if |z| > 4, then |k
z
| < k

4
< 1 for any 0 < k < 4, whence

1

z − k
=

1

z

1

1− k
z

=
1

z

∞∑
n=0

(
k

z

)n

=
∞∑

n=1

kn−1 1

zn
.

Hence, f has the Laurent expansion

f(z) =
∞∑

n=1

(
1

2
(1n−1)− 2(2n−1) +

3

2
3n−1

)
1

zn
=

∞∑
n=1

1− 2n+1 + 3n

2

1

zn

=
1

z2
+

6

z3
+

25

z4
+

90

z5
+ · · ·

Notice that the coefficient of the first term vanished, so this series can just as well start
at n = 2. Moreover, the resulting Laurent series actually converges on the larger annulus
|z| > 3.

If we define F by the Laurent series

F (z) :=
∞∑

n=2

1− 2n+1 + 3n

2(1− n)

1

zn−1
=

∞∑
n=1

1− 2n+2 + 3n+1

−2n

1

zn
,

then F converges on the same annulus, and term-by-term differentiation shows that F ′(z) =
f(z), so F is an analytic antiderivative of f on the set |z| > 4.

Now, set g(z) = z2(z−1)−1(z−2)−2(z−3)−1; we shall show g has no analytic antiderivative
on the annulus |z| > 4. To see this, note that if such an antiderivative existed, then the
Fundamental Theorem of Calculus implies that

∫
γ
g dz = 0 for any closed curve γ in the

annulus. However, since g(z) = z f(z), we conclude

g(z) =
∞∑

n=1

1− 2n+1 + 3n

2

1

zn−1
=

1

z
+

6

z2
+

25

z3
+

90

z4
+ · · ·

whence term-by-term integration and Cauchy’s Integral Formula imply∫

|z|=5

g(z) dz =

∫

|z|=5

1

z
dz +

∫

|z|=5

6

z2
dz +

∫

|z|=5

25

z3
dz + · · · = 2π i + 0 + 0 + · · · = 2π i 6= 0.

Thus, g has no antiderivative on the annulus.



Problem G [1980]: Let n be a positive integer. Let Cn denote the circle {|z| = n}, oriented
positively. Use residues to find all possible values of

∫

Cn

z + ez

z2(2z − 5)(3z − 10)
dz.

Let f denote the integrand, and observe that

f(z) =
z + ez

6 z2(z − 5
2
)(z − 10

3
)
,

so f has isolated singularities (poles) at 0, 5
2
, and 10

3
. Let us calculate the residues at each

singularity.
For the singularity 5

2
, observe that we can write f in the form

f(z) =
1

z − 5
2

(
z + ez

6 z2(z − 10
3
)

)
,

where the expression in parentheses is analytic on a neighborhood of 5
2
, and hence has a

power series expansion there of the form c0 + c1(z − 5
2
) + c2(z − 5

2
)2 + · · · . Hence,

Res

(
f,

5

2

)
= c0 =

z + ez

6 z2(z − 10
3
)

∣∣∣∣
z=5/2

= − 4

125

(
5

2
+ e5/2

)
=: B.

Similar reasoning leads to

Res

(
f,

10

3

)
=

z + ez

6 z2(z − 5
2
)

∣∣∣∣
z=10/3

=
9

500

(
10

3
+ e10/3

)
=: C.

For the last singularity 0, we modify our approach slightly. Observe that we can write f
in the form

f(z) =
1

z2

(
z + ez

6(z − 5
2
)(z − 10

3
)

)
,

where the expression in parentheses is analytic on a neighborhood of 0, and hence has a
power series expansion there of the form b0 + b1 z + b2 z2 + · · · . Hence,

Res(f, 0) = b1 =
d

dz

{
z + ez

6(z − 5
2
)(z − 10

3
)

}∣∣∣∣
z=0

=
27

500
=: A.

Now, since 0 < 2 < 5
2

< 3 < 10
3

< 4, the Residue Theorem implies

∫

Cn

z + ez

z2(2z − 5)(3z − 10)
dz =





2π i A n = 1, 2
2π i(A + B) n = 3
2π i(A + B + C) n = 4, 5, . . .



Problem H [1986]: Let γ be a Jordan curve enclosing the points 0, 1, 2, . . . , k. Use residues
to evaluate the integrals

Ik :=

∫

γ

dz

z(z − 1)(z − 2) · · · (z − k)
, k = 0, 1, 2, . . .

Jk :=

∫

γ

(z − 1)(z − 2) · · · (z − k)

z
dz, k = 0, 1, 2, . . .

Let us start with the Jk first. In this case, the integrand fk(z) has only one singularity,
namely 0, and so

Res(fk, 0) = (z − 1)(z − 2) · · · (z − k)
∣∣
z=0

= (−1)(−2) · · · (−k) = (−1)k k!.

Observe that this also makes sense if k = 0, since the residue of frac1z at 0 is 1 = 0!. Hence,
by the Residue Theorem

Jk = 2π(−1)kk! i.

As for the Ik, observe that by Cauchy’s Integral Formula,

I0 =

∫

γ

1

z
dz = 2π i.

So let us assume k ≥ 1. In this case, the integrand gk has k + 1 zeros, namely, the integers
0, 1, 2, . . . , k. Since each of these are simple poles, arguing as in Problem G implies that for
0 ≤ j ≤ k,

Res(gk, j) =
1

z(z − 1)(z − 2) · · · (z − j + 1)(z − j − 1) · · · (z − k)

∣∣∣∣
z=j

=
1

j(j − 1)(j − 2) · · · (2)(1)(−1)(−2) · · · (− (k − j)
) =

(−1)k−j

j!(k − j)!

Thus, by the Residue Theorem, it follows that

Ik = 2π i

k∑
j=0

Res(gk, j) = 2π i

k∑
j=0

(−1)k−j

j!(k − j)!
.

However, this can be simplified greatly by recalling that the binomial coefficients are
given by

(
n

r

)
:=

n!

r!(n− r)!
,

whence

Ik =
2π i

k!

k∑
j=0

(
k

j

)
1j(−1)k−j =

2π i

k!

(
1 + (−1)

)k
= 0.



Problem I [1997]: Use residues to evaluate:

∫ ∞

−∞

cos x

1 + x + x2
dx.

Observe that
∫ ∞

−∞

cos x

1 + x + x2
dx = Re

∫ ∞

−∞

ei x

1 + x + x2
dx,

so we shall evaluate the latter integral and take its real part.
Observe that the integrand can be written as

f(z) :=
ei z

1 + z + z2
=

eiz

(
z − (−1

2
+ i

√
3

2
)
)(

z − (−1
2
− i

√
3

2
)
) .

Since the two singularities of f are simple, we find

Res

(
f,
−1

2
+ i

√
3

2

)
=

eiz

z − (−1
2
− i

√
3

2

)
∣∣∣∣∣
z=−1

2
+i

√
3

2

=
e−

√
3/2−i/2

i
√

3
= − i e−i/2

√
3 e

√
3/2

.

Now, for any radius R > 1, consider the semicircular path γR below:

ΓC

ΓL-R R

-
1
����
2
+ i

�!!!!3
���������
2

-
1
����
2
- i

�!!!!3
���������
2

In this case, γL is the line segment from −R to R and γC is the circular arc centered at 0 of
radius R.

By the Residue Theorem, we have

∫

γL

f(z) dz +

∫

γC

f(z) dz =

∫

γR

f(z) dz = 2π i Res

(
f,
−1

2
+ i

√
3

2

)
=

2π e−i/2

√
3 e

√
3/2

,

and this holds for every R > 1.
Now, under the parametrization z(x) = x for −R ≤ x ≤ R, we have

∫

γL

f(z) dz =

∫ R

−R

eix

1 + x + x2
dx.



On the other hand, observe that if z ∈ γC , then

∣∣f(z)
∣∣ =

|eiz|∣∣z − (−1
2

+ i
√

3
2

)
∣∣ ∣∣z − (−1

2
− i

√
3

2
)
∣∣ ≤

eRe(iz)

∣∣|z| − |−1
2

+ i
√

3
2
|
∣∣ ∣∣|z| − |−1

2
− i

√
3

2
|
∣∣

=
e− Im z

(R− 1)(R− 1)
≤ 1

(R− 1)2
.

Thus,

∣∣∣∣
2π e−i/2

√
3 e

√
3/2

−
∫ R

−R

eix

1 + x + x2
dx

∣∣∣∣ =

∣∣∣∣
∫

γR

f(z) dz −
∫

γL

f(z) dz

∣∣∣∣ ≤
∣∣∣∣
∫

γC

f(z) dz

∣∣∣∣

≤
∫

γC

|f(z)| |dz| ≤ 1

(R− 1)2
· π R =

πR

(R− 1)2
→ 0 as R →∞.

Hence,

∫ ∞

−∞

eix

1 + x + x2
dx =

2π e−i/2

√
3 e

√
3/2

.

Consequently

∫ ∞

−∞

cos x

1 + x + x2
dx = Re

∫ ∞

−∞

ei x

1 + x + x2
dx = Re

(
2π e−i/2

√
3 e

√
3/2

)

=
2π√

3 e
√

3/2
Re(e−i/2) =

2π√
3 e

√
3/2

cos

(
− 1

2

)
=

2π cos(1/2)√
3 e

√
3/2

.


