Final Exam Solutions

Problem A [1994]: Suppose the coefficients of the power series

o0
= E an 2"
n=0
satisfy the recurrence relation

ag =1, a; = —1, 3a, +4a,—1 — ap—o =0 for n > 2.

Find the radius of convergence and the function to which it converges.

Let us first show that this series does have a appositive radius of convergence R, so that
it does converge to some analytic function on an open neighborhood of 0. To do this, it
suffices to show that |a,| < 2" for all n, since this implies

lim {/|a,| < lim v2" =
n—oo n—oo

which would imply by Hadamard’s Theorem that R > % The inequality follows by a quick
induction, for |ag| = 2° and |a;| < 2!, and (assuming the inductive hypothesis holds)
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|an| =

= on—2 =3.2"2 < 4.9"2 = 9",

Thus, the series converges with some positive radius R. To determine R precisely, let us
first find what the series sums to. Since the convergence is absolute, we can multiply and
rearrange our series to obtain:

—N e f@) =Y s 2= awa
n=0
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Thus,

3f(2)+4z f(2) — 2% f(2) = 3(ap + a1 2) + 4(ag 2 +Z (2ay, + 4an_1 — ap_2)2"
n=2

= 3(ag) + (3a; + 4ag)z + ZO.

n=2
Consequently, we find
3+ z
3+4z— 22
Returning to the radius of convergence, it is the minimum distance from the center of the

series 0 to the nearest singularity of f. Since the denominator of f vanishes at z = 2 + /7
and 2 =2 — 7 , we conclude

R =min {|2+V7[,[2 - V7|} = V7 -2.

(Observe that R ~ 0.65, which is indeed greater than the initial estimate of 1/2.)

(B4+4z—22)f(2) =31+ (-3+4)z = f(z)=



Problem B [1977]: Let f be an analytic function whose Taylor series for |z| < 1 is
1+ 22+ 322+ ---. Define the sequence of real numbers ag, a1, as, ... by the formula

f(2) =) an(z+2)"

n=0

Calculate the a,, and determine the radius of convergence of

g(z) = f: an 27
n=0

Consider the geometric series

1
g(z):1+z+z2+z3+---:1_z,

which converges absolutely for |z| < 1. Since term-by-term differentiation is valid inside the
radius of convergence, we find

J()=1+22+32"+42"+ -+

which agrees with our initial series, whence

R O S e T,

Next, observe that the a, are merely the coefficients of the Taylor series expansion of
f(z) at the point z = —2. Note that (by induction)

2 3.2 (n+1)!
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we calculate that
1 1 (n+1)! n+1
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Lastly, consider the power series g(z) = ) a, 2™. Since f(z) = > a,(2+2)", we conclude
by the uniqueness of analytic functions that

o N 1
)= Y == =
Hence, the only singularity of g occurs at z = 3, whence the radius of convergence for g is 3.
Alternatively, observe that
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we conclude again that R =1/(3) = 3.



Problem C [1990]: Suppose f and g are analytic in the entire complex plane, and suppose
that | f(z)| < |g(z)| for every z € C. Prove that there is a complex constant A such that
f(z) = Ag(z) for all z.

Notice that if g(z) = 0, then the inequality implies f(z) = 0 as well, and the result holds
for any choice of A. Hence, let us assume that g is not identically zero.
Define the function

Observe that h is analytic on C except for isolated singularities, namely, the (isolated) zeros
of g(z). Moreover, if z is not a singularity, we have

l9(2)]|

We claim that these are removable singularities for h(z). To see this, let zg be a singularity
of h, i.e. a zero of g. As this zero is isolated, there exists a deleted neighborhood B =
A(z0;0, R) of zy on which g is nonzero. But then equation (1) holds for every z € B. This
implies that zy is neither a pole nor essential, since either of those conditions implies f is
unbounded in any neighborhood of zy;. Hence, zp must be removable.

Consequently, A can be made continuous and analytic at each removable singularity zo,
and so h is thus analytic on the whole of C. Moreover, since equation (refeqn:1) holds for
every non-singularity, continuity implies (refeqn:1) holds at each singularity too.

Thus, h is everywhere bounded by 1. But Liouville’s Theorem asserts that A must
therefore be a constant function, say h(z) = A. This implies that

f(z) = Ag(2),

where equality holds for all points at which g(z) # 0. But since g(z) = 0 implies f(z) = 0,
we have equality at all points of C.




Problem D [1978]: Let f(z) = u(z) +iv(z) be analytic in {|z| < 1}. If f(0) = 0, then

show that
2 ) 2m )
/ u(re®)? dh = / v(re®)? df
0 0

for any 0 <r < 1.

Since f is analytic, so too is f2. Thus, according to the Cauchy Integral Formula,

1 2)?
0= f<0)2 T oy iC(—)O d
|z|=r

z

for any 0 < r < 1.
Using the parametrization z(6) = r e for 0 < 0 < 27, we find

1 27 102 ) 1 2 )
o= L [TIre) m’e“’d@:—/ f(re?)* df.
0

271 Jo rei? 27

(Astute eyes will recognize this as just the Mean Value Property applied to the analytic
function f2.) Multiplying through by 27 yields

2m
0= f(re)?de.
0

Now, if u and v denote the real and imaginary parts of f, then
A= (w+iv)(u+iv) = (u* —v?) + 2uvi,

whence
27
- / (u(re®)® —v(re®)?) + 2u(re®)v(re”)ido
= / u(re®)? —v(re®)2dl + 2i / u(re®)u(re?) db.
0 0

Since u and v are real-valued, the two integrals above are real numbers. Thus, equating
real parts yields

2m o o
0= / U(T’ 6i9)2 o U(T 6i0>2d8 — / U(T €i9)2 do — / U(T 6i6)2d07
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which completes the proof.
As a bonus, equating the imaginary parts gives us another cool result, namely

2m
/ u(r ey v(re) dd = 0.
0



Problem E [1979]: For what z € C does the series below converge? To what function does
the series converge?

> [2" n
2 (m + —)
n=0

Observe this is a Laurent series: the sum of a power series and a singular series. Hence,
this series will converge for z € C if and only if both the power series (regular part) converges
at z and the singular series converges at z.

Observe that the regular part is

This is precisely the Taylor series of the complex exponential e*. As this is an entire function
with no singularities, its radius of convergence is infinite. Alternatively, note that
1 n! 1

m+Dl' 1 nr1 0 W T

Cn+1
Cn

whence R =1/0 = oo.
On the other hand, the singular part is

“n 1 2 3

= - — 4+
—~ oz + 22 + 23
Recall from Problem B that
- 1
n __ 2 3 _
Z(n-i—l)z =14+22+32"+42 ‘l—"'—m,

n=0

and this converges for |z| < 1. Hence, if |z| > 1, then

1 1 1 n 2 n 1 n
2 (_1)2_2 22 23 ’
whence the singular part sums to
1 1 B z
z (1- 1)2 (1 —2)2

and converges for |z| > 1.
Thus, the Laurent series sums to

and converges on the annulus for |z| < 1.



Problem F [1978]: Show there is a complex analytic function defined on the set U =
{|z| > 4} whose derivative is
2
(z—1)(z—2)(z—3)°
Is there an analytic function on U whose derivative is

2,2

9
(z—1)(z=2)(z—3)
Let us set f(2) = 2(2 —1)"'(2 —2)7%(z — 3)~". Since f is analytic in the annulus |z| > 4,
it has a Laurent expansion there. Using partial fractions, we find that
1 1 5 1 3 1

f(z)zﬁz—l_ z—2+§z—3'
Now, if |z| > 4, then || < £ <1 for any 0 < k < 4, whence
1 1 1 L= (k)" & 1
_ = —— v _ k,n—l_‘
z—k z1-% z%(z) ; 2"
Hence, f has the Laurent expansion
(1 3 I = 1—2ntt43n 1
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Notice that the coefficient of the first term vanished, so this series can just as well start
at n = 2. Moreover, the resulting Laurent series actually converges on the larger annulus
2| > 3.
If we define F' by the Laurent series

1 —ontlp 30 q 1 —9nt2 4 gl g
F = — _
(2) ; 2(1—n) 2znt nZ:; —2n 2"’

then F' converges on the same annulus, and term-by-term differentiation shows that F’(z) =
f(2), so Fis an analytic antiderivative of f on the set |z| > 4.

Now, set g(z) = 2%(2—1)7!(2—2)7%(2—3)~!; we shall show g has no analytic antiderivative
on the annulus |z| > 4. To see this, note that if such an antiderivative existed, then the
Fundamental Theorem of Calculus implies that fy gdz = 0 for any closed curve v in the
annulus. However, since g(z) = z f(z), we conclude

o0

1—2ntl 437 1 1 6 25 90
g(Z):Z 5 zn—122+?+5+¥+”'

n=1

whence term-by-term integration and Cauchy’s Integral Formula imply

1 6 25
g(z)dz = —dz + —dz + —dz+-- =214+ 04+0+--- =277 #0.
z z2 z3
|z|=5 |z|=5 |z|=5 |z|=5

Thus, ¢ has no antiderivative on the annulus.



Problem G [1980]: Let n be a positive integer. Let C,, denote the circle {|z| = n}, oriented
positively. Use residues to find all possible values of

/ z + €* "
o, 22(22=5)(3z2 —10)

Let f denote the integrand, and observe that

z+e*

62D

f(2)

so f has isolated singularities (poles) at 0, g, and %. Let us calculate the residues at each
singularity.

For the singularity g, observe that we can write f in the form

1= ()

3

where the expression in parentheses is analytic on a neighborhood of g, and hence has a

power series expansion there of the form ¢y + ¢1(z — 2) + ca(z — 2)2 + - - - . Hence,

2
) z+e*
Res(fi):COIW

:—i §+e5/2 =: B.
5 ) |.zs/2 125\ 2

Similar reasoning leads to

10y z+e¢€*
3) 622(2—2)

(24 o) —ec

R _
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For the last singularity 0, we modify our approach slightly. Observe that we can write f

in the form
1 + €*
10~ 57 s)

2 3

where the expression in parentheses is analytic on a neighborhood of 0, and hence has a
power series expansion there of the form by + by 2z + by 22 + - - - . Hence,

Res(f,0) = b = diz{ 6(z —ZS(ZZ— 1) }

2 3
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z=0

Now, since 0 < 2 < g <3< % < 4, the Residue Theorem implies

/ e 2mi A n=1,2
dz=1<{ 2mi(A+ B) n=3
2 _ —
¢, #°(22 = 5)(32 - 10) 2mi(A+ B+C) n=4,5,...



Problem H [1986]: Let v be a Jordan curve enclosing the points 0,1,2, ..., k. Use residues
to evaluate the integrals

dz
Ik':Az(z—l)(z—Z)---(z—k)’ k=0,1,2,...
Jk::/(2_1)<2_2)”'(2_k)dz, k=0,1,2,...

z

Let us start with the Ji first. In this case, the integrand fi(z) has only one singularity,
namely 0, and so

Res(fi,0) = (2 = 1)(2 = 2) -+ (2 = k)|, = (=1)(=2) - (=k) = (—=1)" kL.

Observe that this also makes sense if £ = 0, since the residue of fraclz at 0is 1 = 0!. Hence,
by the Residue Theorem

Jp = 2m(—=1)*k!4.

As for the I, observe that by Cauchy’s Integral Formula,

1
]0:/—dz:27r2'.
v 2

So let us assume k£ > 1. In this case, the integrand g, has k + 1 zeros, namely, the integers

0,1,2,..., k. Since each of these are simple poles, arguing as in Problem G implies that for
0<j<k,
Res(gs. ) :
es(gk,J) = . .
2z-1(z=2)E-j+)E—j-1 - (z-k)|.
1 (—1)kd

G- DE =2 @QMEDE2) (= (k=g) Gk =)
Thus, by the Residue Theorem, it follows that
- L (—1)k
I, =271 Res(gx,j) = 2m1 _
2w Reslond) = 2712 gy

However, this can be simplified greatly by recalling that the binomial coefficients are
given by

whence



Problem I [1997]: Use residues to evaluate:

& CcoS T
—dz.
/Oo 1+x+ 2

Observe that

*  cosx o el
——dz =R —d
/_001+x+x2 ’ e/_ool+m+x2 “

so we shall evaluate the latter integral and take its real part.
Observe that the integrand can be written as

eZ z e’lZ

f(2):
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I
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Since the two singularities of f are simple, we find

Res <f, _71 + z?)

z
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Now, for any radius R > 1, consider the semicircular path vz below:

In this case, v, is the line segment from —R to R and 7¢ is the circular arc centered at 0 of
radius R.
By the Residue Theorem, we have

—1 \/§ o e~ /2
V3ev3/2

/mf(z)dz—ir/vcf(z)dz:/mf(z)dz:%riRes (f,7+¢7

and this holds for every R > 1.
Now, under the parametrization z(x) = = for —R < z < R, we have

R eiac
dz = ——dx.
ALf<Z) z /_Rl+x+x2 T



On the other hand, observe that if z € v¢, then

| el? ’ eRe(iz)
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Thus,
2 e /2 R 2)d ) d
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Hence,
/oo elix " I e i/2
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Consequently

*  cosw * el 2 /2
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