
Algebraic Number Theory Homework 5 Rahbar Virk

Solution 1.

Let B = R[x], clearly B is an integral domain. Let p = (x), clearly p is maximal and
hence prime in B. Let A = R, clearly A is a subring of B and satisfies the property that
p ∩ A = 0.

Solution 2.

Let a be a non-zero integral ideal and let b be a non-zero fractional ideal in a Dedekind
domain B. We will show that βb + a = B for some β ∈ b−1. Note that as β ∈ b−1 we
have that βb ⊆ B and thus βb is an integral ideal. We will thus have shown that given
any integral ideal a and an ideal class of Cl(B) represented by a fractional ideal b there
is an integral ideal (β)b (which is clearly in the same ideal class as b) that is relatively
prime to a.

Let p1, . . . , pn be the distinct prime ideals that show up in the factorization of a. Let

bi = b−1p1 . . . pi−1pi+1 . . . pn

And let βi ∈ bi\bipi. (Note that bi\bipi is non-empty as otherwise bi = bipi, which
upon multiplication by b−1

i yields B = pi, a contradiction). Let β =
∑n

i=1 βi. Note
that (βi)b ⊆ bib = p1 . . . pi−1pi+1 . . . pm ⊆ pj for i 6= j, and consequently we have that
(βi)b 6⊆ pi as otherwise (βi)b ⊆ p1 . . . pn which implies that βi ∈ b−1p1 . . . pn = bipi,
which is a contradiction by our choice of βi.

We claim that (β)b 6⊆ pi for all 1 ≤ i ≤ n, as otherwise (β)b ⊆ pi, for some i, which

implies that b
(∑n

j=1 βj

)
⊆ pi, but as (βj)b ⊆ pi for j 6= i we consequently have that

(βi)b ⊆ pi, a contradiction. Thus, βb and a have disjoint prime factorizations (i.e any
prime factor of one is not a prime factor of the other) and consequently βb−1 + a = B,
as required.

Solution 3.

By our previous problem, in a Dedekind domain B, given any integral ideal a and a
fractional ideal b we can find β ∈ b−1 such that (β)b+a = B. Let c be an arbitrary ideal
in B and let x ∈ c with x 6= 0 (clearly the zero ideal is principal). Note that (x)c−1 ⊆ B
and is thus an integral ideal. Setting a = (x)c−1 and b = c−1 in the statement obtained
from the previous problem we get that there is some β ∈ c such that

(β)c−1 + (x)c−1 = B

which implies that c = (β) + (x), i.e c can be generated by two elements, as required.
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Solution 4.

Let d,K, p be as stated in the problem

First, assume that x2 ≡ d mod p has a solution. This implies that (x+
√

d)(x−
√

d) =
np for some n ∈ Z. Thus, (x +

√
d)(x−

√
d) ∈ pOK but clearly p does not divide either

x+
√

d or x−
√

d, hence pOK is not a prime ideal. Contrapositively, we have thus shown
that if pOK is a prime ideal then x2 ≡ d mod p has no solutions.

Conversely, suppose x2 ≡ d mod p has no solutions. Assuming that pOK is not a
prime ideal we will derive a contradiction which will consequently give us that x2 ≡ d
mod p has no solutions implies that pOK is a prime ideal. If pOK is not a prime ideal then
there exist α, β, γ ∈ OK such that αβ = γp but p does not divide α or β. Taking norms
we then have N(α)N(β) = p2N(γ), moving to modulo p we have that N(α)N(β) ≡ 0
mod p. Note that Z/(p) is a field and thus without loss of generality we may assume that
N(α) ≡ 0 mod p. We will now consider two cases

(a) d 6≡ 1 mod 4
In this case OK = Z[

√
d] and α = x+y

√
d where x, y ∈ Z and thus N(α) = x2−y2d

which implies that x2 ≡ y2d mod p clearly y 6≡ 0 mod p as otherwise x2 ≡ 0 which
implies that x ≡ y ≡ 0 mod p (as we are in a field), and consequently p divides α,
which contradicts our choice of α. But now as y 6= 0 and we are working in a field,
we have some y−1 ∈ Z/(p) such that

(xy−1)2 ≡ d mod p

which is a contradiction, as required.

(b) d ≡ 1 mod 4
In this case OK = Z[1

2
+ 1

2

√
d] and consequently N(α) = (x + y

2
)2 − (y

2
)2d ≡ 0

mod p. Thus

4[(x +
y

2
)2 − (

y

2
)2d] ≡ (2x + y)2 − y2d ≡ 0 mod p

But note that as before y 6≡ 0 mod p as otherwise 2x ≡ 0 but by assumption of
the problem we know that 2 6≡ 0 mod p so, x ≡ 0 and consequently p divides α,
which contradicts our choice of α. But now as y 6= 0 and we are working in a field,
we have some y−1 ∈ Z/(p) such that

(y−1(2x + y))2 ≡ d mod p

which is a contradiction as required.
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