
Algebraic Number Theory Homework 4 Rahbar Virk

Solution 1.
Note that Z is Noetherian, hence by the Hilbert basis theorem Z[x] is also Noetherian.
Furthermore Z is a UFD and a polynomial ring over a UFD is also a UFD (cf. Dummit
and Foote 3rd edition, Theorem 7, p.304), hence Z[x] is a UFD. But UFDs are integrally
closed (cf. Dummit and Foote 3rd edition, p. 693), hence Z[x] is integrally closed.
However, Z[x] is not a Dedekind domain as the ideal (x) is clearly prime in Z[x] but not
maximal as (x) ( (x, 5) ( Z[x].

Solution 2. Note that by the structure theorem on free modules over PIDs we have that
if G is a free Z-module of rank n and H a Z-submodule of G with rank s ≤ n, then there
exists a basis u1, . . . , un for G and positive integers α1, . . . , αs such that α1u1, . . . , αsus

is a basis for H. From this it is clear that G/H (G and H by virtue of being Z-modules
are free abelian groups, so I am looking at the quotient group here) is the direct prod-
uct of finite cyclic groups of order α1, . . . , αs and n − s infinite cyclic groups. Hence,
|G : H = |G/H| is finite if and only if n = s.

Also note that with R as stated in the problem as 1 ∈ R we have that Z ⊆ R.

(a ⇒ b)

Note that OK is a free Z-module (i.e a free abelian group) of rank n = [K : Q] and
R is a Z-submodule of OK (i.e subgroup). But subgroups of free abelian groups
are free abelian themselves. Moreover, a subgroup of a free abelian group has finite
index iff the rank of the subgroup is equal to the rank of the group (by the remark
we made at the very beginning). Thus, the rank of R is also n. This means that
there exists a basis {e1, . . . , en} for R over Z, however these elements must stay
linearly independent over Q too (if a non trivial linear combination of them over Q
was 0 then we could clear denominators to obtain a non trivial linear combination
that was 0 over Z). But K is a vector space of dimension n over Q thus the set
{e1, . . . , en} is a basis for K over Q. Hence, R contains a basis of K over Q.

(b ⇒ c)

So assume R contains a basis {e1, . . . , en} of K over Q. Clearly as R ⊆ OK and K =
Frac(OK) we have that Frac(R) ⊆ K. Conversely if k ∈ K then k =

∑n
i=1 aiei

where ai ∈ Q but each aiei ∈ Frac(R) as Z ⊆ R (and consequently Q ⊆ Frac(R)).
Thus, k ∈ Frac(R).

(c ⇒ a)

So assume that the field of fractions of R is K. Now note that OK contains a basis
{e1, . . . , en} of OK over Z (it’s a free abelian group of rank n), further note that
by virtue of being a subgroup of OK , R too is a free abelian group. Now each
ei ∈ OK ⊆ K = Frac(R) thus each ei = ai

bi
where ai, bi ∈ R and bi 6= 0. Thus

(b1b2 . . . bn)ei = (b1 . . . bi−1bi+1 . . . bn)ai ∈ R. We now claim that the (b1 . . . bn)ei are
linearly independent over Z, indeed, if there was a non trivial linear combination
of them over Z that was 0 then working in K we could multiply by the inverse of
(b1 . . . bn) to obtain a non trivial linear combination of eis over Z that was 0. Thus
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R has rank at least n as a free Z-module (or equivalently as a free abelian group),
but R is a subgroup of OK , which has rank n, thus R must also have rank n. But
subgroups of finitely generated free abelian groups have same the same rank as the
group they are lying in iff they are of finite index, thus, [OK : R] is finite.

Now we assume that R is a subring of OK satisfying these conditions.

(i) By our remarks earlier R is a finitely generated free abelian group and every ideal
in R being a subgroup (under addition) is also a free abelian group and thus must
be finitely generated as a group, giving us that the ideal is finitely generated. Thus,
every ideal in R is finitely generated which is equivalent to R being Noetherian.

(ii) Let p be nonzero prime ideal in R. And let x ∈ p such that x 6= 0. As x ∈ p ⊂ R ⊆
OK we have that x is integral over Z and thus must satisfy an equation of the form

xn + a1x
n−1 + · · ·+ an = 0

where each ai ∈ Z, furthermore Z ⊆ R. We can take n to be minimal which gives
us that an 6= 0, but from the equation we also have that an ∈ p. So p ∩ Z is a non
zero prime ideal of Z but in Z nonzero prime ideals are maximal, thus Z/(p ∩ Z)
is a field and in particular must be a finite field of characteristic p, for some prime
p. Since K is a finite algebraic extension of Q, R/p must be contained in a finite
algebraic extension of Z/(p∩Z) (another way of seeing the same thing is by noting
that the canonical ring homomorphism from Z to R/p has kernel p∩Z, and that R
is finitely generated over Z and thus R/p must be finitely generated over Z/(p∩Z)).
In other words R/p must be contained in a finite field of characteristic p, making
R/p a finite integral domain (the integral domain follows just from p being prime).
Finite integral domains are fields hence p must be maximal.

(iii) Suppose R 6= OK , then there exists x ∈ OK such that x 6∈ R. But by deifinition
of the ring of integers x satisifies a relation of the form xn + a1x

n−1 + · · ·+ an = 0
with ai ∈ Z ⊆ R. Furthermore, x ∈ OK ⊆ K = Frac(R) thus the polynomial
Xn + a1X

n−1 + · · · + an lies in R[X] and has a root in Frac(R) which doesn’t lie
in R, thus R is not integrally closed.

Solution 3.
Consider the ideal a = (2, 1 +

√
−3) in Z[

√
−3]. Note that if we can show that a is a

prime ideal we will be done as clearly a 6= (2) but a2 = (4, 2 + 2
√
−3,−2 + 2

√
−3) =

(4, 2 + 2
√
−3) = (2)a and if we did have unique factorization of ideals this would mean

that a = (2). We claim that a is a maximal ideal (and hence prime). Consider any
m + n

√
−3 6∈ p then clearly one of m,n is even and the other odd (if both were even

they’d be contained in (2), if both were odd then m+n
√
−3−1−

√
−3 would be contained

in (2)). But now clearly 1 ∈ (a, m + n
√
−3), hence a is maximal as required.

Solution 4.
In this problem integral domain will always mean a non-trivial, commutative ring with
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unity.

We will need some preliminary definitions and results in order to approach this prob-
lem.

Let R be any integral domain, let K = Frac(R).

We will say that an ideal a of R is invertible if there exists some R-submodule (denote
it by a−1) of K such that aa−1 = R. Here multiplication is defined in the usual way for
submodules, i.e if M and N are R-submodules of K then

MN = {
∑

i

mini |mi ∈ M, ni ∈ N}

Note that under this definition, products of R-submodules of K are in turn R-
submodules of K. Furthermore it is quite clear that every nonzero principal ideal is
invertible.

We will take the following approach. First, we will show that if the product of finitely
many ideals in an integral domain is invertible then each ideal in the product is invertible.
Then we will show that in an integral domain if an ideal a can be written as a product
of finitely many invertible prime ideals then this is the unique representation of a as a
product of prime ideals. Using these facts we will then show that if B is as stated in the
problem then any nonzero invertible prime ideal p of B is maximal. Finally, we will then
show that every prime ideal of B is invertible and hence maximal and the fact that B is
a Dedekind domain will follow easily from this.

In keeping with our outline we now show that if the product of finitely many ideals
in an integral domain R is invertible then each ideal in the product is invertible. Let
b =

∏
i ai (where the product is finite), and let b be invertible, i.e there is some b−1 such

that bb−1 = R, this means that

b−1b = R = b−1
∏

i

ai = aj(b
−1

∏
i6=j

ai)

hence each ai is invertible, as required.

Now we need to show that in an integral domain R if a =
∏

i pi (again this is a finite
product) where each pi is an invertible prime ideal, then this is the unique factorization
of a into prime ideals. So suppose a is as stated and a =

∏
j qj, where the qjs are prime

ideals. Let p1 be minimal amongst the pis (with respect to inclusion). Now as

a =
∏

i

pi =
∏

j

qj

we have that
∏

j qj is contained in p1 then as p1 is a prime ideal we have that some qj,
say q1 ⊆ p1. Similarly, some pr is contained in q1 and we have that pr ⊆ q1 ⊆ p1, but
as p1 is minimal we have that pr = q1 = p1. Now as we had assumed that the pis are
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invertible we may multiply a by p−1
1 and continue in a similar fashion to obtain that each

qj is equal to some pi. Thus, a has a unique factorization into prime ideals.

We now show that if B is as stated in the problem then every nonzero invertible prime
ideal p of B is maximal. Let a ∈ B such that a 6∈ p. We will show that p + (a) = B,
hence showing that p is maximal. Assume to the contrary that p + (a) is a proper ideal.
Then, consider the proper ideals p+(a) and p+(a)2. As we have factorization into prime
ideals in B, we get that p + (a) =

∏n
i=1 pi and p + (a)2 =

∏m
j=1 qj. Let B = B/p and let

the ‘bar’ denote the image in B of elements/ideals of B. Note that as p is prime B is an
integral domain, furthermore note that as each pi and each qj is a prime ideal containing
p we have that each pi and each qj is a prime ideal of B. We now have that

(a) =
n∏

i=1

pi

and that

(a)
2

=
m∏

j=1

qj

but (a)
2

= (a)(a) so we have that

(a)
2

=
n∏

i=1

p2
i =

m∏
j=1

qj

Now (a)
2

is a nonzero principal ideal (it’s generated by a2 6= 0) and thus invertible. But
now by our very first result this means that each pi (and qj for that matter) is invertible.

This in turn means that (a)
2

has a factorization in invertible prime ideals, but now by
our second result this means that this factorization into prime ideals is unique. So the
qjs are the pis (each repeated twice). But note that as each pi and each qj contained p

in B we have that the preimage of pi is exactly pi and that the preimage of qj is exactly
qj. We thus have that the qjs are equal to the pis (each repeated twice). We thus have
that

∏n
i=1 p2

i = (p + (a))2 =
∏m

j=1 qj = p + (a)2. But (p + (a))2 = p + (a)2 implies that

p ⊆ p + (a)2 = (p + (a))2 ⊆ p2 + (a). Thus any x ∈ p may be written as x = y + az
where y ∈ p2 and z ∈ B, but this in turn implies that az ∈ p and as a 6∈ p we have
that z ∈ p (as p is a prime ideal). Consequently we have that p ⊆ p2 + p(a), but clearly
p2 + p(a) ⊆ p. Hence, p = p2 + p(a). But now note that (in what seems to be a long long
time ago in a galaxy far far away) we had assumed p to be invertible, thus multiplying
by p−1 we get that

pp−1 = B = p−1(p2 + p(a)) = Bp + B(a) = p + (a)

which is a contradiction as we had assumed p+(a) to be a proper ideal, thus p+(a) blows
up to the whole ring B as required. (Note that the secondlast equality follows because
the way we had defined our submodule multiplication, the operation was associative,
distributed nicely over sums etc.)
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Ok, we are almost done. Let p be any nonzero prime ideal of B and let x be a nonzero
element of p. Now as we have factorization into prime ideals in B we have that

(x) =
∏

i

pi ⊆ p

Now as (x) is principal it is also invertible and by our very first result this implies that
each pi is invertible which as a consequence of our most recent result implies that each
pi is maximal. Now as p is prime and

∏
i pi ⊆ p we have that one of the pis, say p1 is

contained in p but as we just showed p1 is maximal and hence p = p1. Thus, p is maximal
as required.

Also note that we have also just shown that along with every prime ideal being max-
imal it is also invertible (as p = p1 which is invertible).

Now to finally show that B is a Dedekind domain all that is left for us to show is that
B is Noetherian and integrally closed.

For Noetherian (it’s short, I promise) we will first show that if an ideal in B is invert-
ible then it is finitely generated. We will then show that every ideal is invertible, hence
showing that B is Noetherian. So let a be an invertible ideal then as aa−1 = B we have
in particular that

∑n
i=1 xiyi = 1 for some xi ∈ a and yi ∈ a−1. We claim that x1, . . . , xn

generate a, as for any a ∈ a we have that ayi ∈ B (this follows from how we defined a−1

right at the beginning of this solution). And thus
∑n

i=1(ayi)xi = a, as required. To see
that every ideal in B is invertible, note that earlier we had shown that every prime ideal
in B is invertible, as any ideal can be written as a product of prime ideals, it follows
easily that every ideal is in turn invertible (just multiply through by the ‘inverse’ of each
prime ideal in the factorization). Hence, B is Noetherian.

To see that B is integrally closed, let a ∈ Frac(B) be integral over B, i.e there exist
c1, . . . , cn ∈ B such that

an + c1a
n−1 + · · ·+ cn = 0 (1)

Now let M be the B-submodule of Frac(B) generated by a, a2, . . . , an−1. Note that
aM ⊆ M (this follows from (1)). Now as a ∈ Frac(B) we have that a = p

q
where

p, q ∈ B and q 6= 0. So we have that qn−1M ⊆ B but this means that the submodule
qn−1M is an ideal of B which means that it must be invertible (we proved this when we
were showing B is Noetherian). So if we set b = qn−1M then there exists a b−1, such
that bb−1 = B. Now as we already noted aM ⊆ M so

aqn−1Mb−1 ⊆ qn−1Mb−1

but this gives us that
abb−1 = aB ⊆ bb−1 = B

hence, a ∈ B.

Remark: It seems that with this proof we can actually drop the uniqueness condition
from the original problem as the uniqueness falls out of the existence of a factorization
into prime ideals (see second step in the outline).
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