Algebraic Number Theory

Homework 3

Solution 1.

Let $K \subseteq L \subseteq M$ be finite separable extensions of fields. Let $\sigma_1, \ldots, \sigma_n$ be the distinct K-embeddings of L into Ω , and let τ_1, \ldots, τ_m be the distinct L-embeddings of M into Ω , where Ω is the galois closure of M over K. We then have that Ω/K is galois, and every map σ_i, τ_j extends to an automorphism of Ω allowing us to compose maps. Now (by corollary 2.19 in Milne)

$$Tr_{L/K} \circ Tr_{M/L} = \sum_{i=1}^n \sigma_i \circ (\sum_{j=1}^m \tau_j) = \sum_{i=1}^n \sum_{j=1}^m \sigma_i \circ \tau_j$$

The last equality follows as σ_i s are homomorphisms. Now each $\sigma_i \circ \tau_j$ is a K-embedding of M into Ω and as our extensions are separable, the number of such mappings is mn = [M:L][L:K] = [M:K]. To prove that $Tr_{M/K} = Tr_{L/K} \circ Tr_{M/L}$ it thus suffices to show that the $\sigma_i \circ \tau_j$ are all distinct when restricted to M. Note that if $\sigma_i \circ \tau_j = \sigma_x \circ \tau_y$ on M then $\sigma_i = \sigma_x$ on L as τ_j and τ_y are the identity on L. But as all the σ_i s were distinct we have that i = x which further implies that $\tau_j = \tau_y$ on M, but then as the τ_j s were distinct we have that j = y. Thus, the $\sigma_i \circ \tau_j$ are all distinct as required. \Box

Solution 2.

Let $L = \mathbb{F}_2(x)$ and $K = \mathbb{F}_2(t)$ (so K is the field of rational functions in t with coefficients from \mathbb{F}_2), where $x^2 - t = 0$ (note that the polynomial $X^2 - t$ over K has a single root with multiplicity 2). Now, L/K is a non-separable extension. Using $\{1, x\}$ as a basis for L over K we then have, by definition

$$Disc(L/K) = \begin{vmatrix} Tr_{L/K}(1.1) & Tr_{L/K}(1.x) \\ Tr_{L/K}(x.1) & Tr_{L/K}(x.x) \end{vmatrix}$$

which by definition of the trace and using the fact that $x^2 = t$, is
$$= \begin{vmatrix} (2) & (0) \\ (0) & (2t) \end{vmatrix}$$

$$= 4t^2$$

but we are in $\mathbb{F}_2(t)$, so
$$= 0$$

Solution 3.

We claim that the ring of integers of $\mathbb{Q}(\alpha)$, where α is a root of the polynomial $x^3 + x^2 - 1$, is $\mathbb{Z}[\alpha]$. To show this it suffices to show that $D(1, \alpha, \alpha^2)$ is squarefree (cf. remark 2.24 in Milne). We claim that $D(1, \alpha, \alpha^2) = -23$.

Preliminarily note that if we let $\alpha = \alpha_1$ and let α_2, α_3 be the galois conjugates of α_1 over the galois closure of $\mathbb{Q}(\alpha)$ then we have that

$$\alpha_1 + \alpha_2 + \alpha_3 = -1 \tag{1}$$

$$\alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \alpha_2 \alpha_3 = 0 \tag{2}$$

$$\alpha_1 \alpha_2 \alpha_3 = 1 \tag{3}$$

Furthemore combining (1), (2) and (3) we also obtain that

$$\alpha_1^2 + \alpha_2^2 + \alpha_3^2 = 1 \tag{4}$$

$$\alpha_1^2 \alpha_2 + \alpha_1^2 \alpha_3 + \alpha_2^2 \alpha_1 + \alpha_2^2 \alpha_3 + \alpha_3^2 \alpha_1 + \alpha_3^2 \alpha_2 = -3 \tag{5}$$

$$\alpha_1^2 \alpha_2^2 + \alpha_1^2 \alpha_3^2 + \alpha_2^2 \alpha_3^2 = 2$$
(6)
$$\alpha_1^2 \alpha_2^2 + \alpha_1^2 \alpha_3^2 + \alpha_2^2 \alpha_3^2 = 2$$
(7)

$$\alpha_1 \alpha_2 \alpha_3^2 + \alpha_1 \alpha_2^2 \alpha_3 + \alpha_1^2 \alpha_2 \alpha_3 = -1$$

$$\alpha_1^2 \alpha_2^2 \alpha_3 + \alpha_1^2 \alpha_2 \alpha_3^2 + \alpha_1 \alpha_2^2 \alpha_3^2 = 0$$
(8)

$$\alpha_{2}^{2}\alpha_{3} + \alpha_{1}^{2}\alpha_{2}\alpha_{3}^{2} + \alpha_{1}\alpha_{2}^{2}\alpha_{3}^{2} = 0$$
⁽⁸⁾

$$\alpha_1^3 = 1 - \alpha_1^2 \tag{9}$$

$$\alpha_2^3 = 1 - \alpha_2^2 \tag{10}$$

$$\alpha_3^3 = 1 - \alpha_3^2 \tag{11}$$

Now (by proposition 2.23 in Milne) we have that

$$\begin{split} D(1,\alpha,\alpha^2) &= \prod_{1 \leq i < j} (\alpha_i - \alpha_j)^2 \\ &= (\alpha_3 - \alpha_2)^2 (\alpha_3 - \alpha_1)^2 (\alpha_2 - \alpha_1)^2 \\ &= (\alpha_2^2 + \alpha_3^2 - 2\alpha_2\alpha_3)(\alpha_3^2 + \alpha_1^2 - 2\alpha_1\alpha_3)(\alpha_2^2 + \alpha_1^2 - 2\alpha_2\alpha_1) \\ &\text{ using (3) and (4) we then have} \\ &= (1 - \alpha_1^2 - \frac{2}{\alpha_1})(1 - \alpha_2^2 - \frac{2}{\alpha_2})(1 - \alpha_3^2 - \frac{2}{\alpha_3}) \\ &= \frac{1}{\alpha_1\alpha_2\alpha_3}(\alpha_1 - \alpha_1^3 - 2)(\alpha_2 - \alpha_2^3 - 2)(\alpha_3 - \alpha_3^3 - 2) \\ &\text{ using (3), (9), (10) and (11) we then have} \\ &= (\alpha_1^2 + \alpha_1 - 3)(\alpha_2^2 + \alpha_2 - 3)(\alpha_3^2 + \alpha_3 - 3) \\ &= -27 + 9(\alpha_1 + \alpha_2 + \alpha_3) + 9(\alpha_1^2 + \alpha_2^2 + \alpha_3^2) \\ &-3(\alpha_1\alpha_2 + \alpha_2\alpha_3 + \alpha_1\alpha_3) - 3(\alpha_1^2\alpha_2 + \alpha_1^2\alpha_3 + \alpha_2^2\alpha_1 + \alpha_2^2\alpha_3 + \alpha_3^2\alpha_1 + \alpha_3^2\alpha_2) \\ &-3(\alpha_1^2\alpha_2^2 + \alpha_1^2\alpha_3^2 + \alpha_2^2\alpha_3^2) + (\alpha_1\alpha_2\alpha_3^2 + \alpha_1\alpha_2^2\alpha_3 + \alpha_1^2\alpha_2\alpha_3) \\ &+ (\alpha_1^2\alpha_2^2\alpha_3 + \alpha_1^2\alpha_2\alpha_3^2 + \alpha_1\alpha_2^2\alpha_3^2) + (\alpha_1\alpha_2\alpha_3) + (\alpha_1\alpha_2\alpha_3)^2 \\ &\text{ now using (1) through (9) we then have} \\ &= -27 + 9(-1) + 9(1) - 3(0) - 3(-3) - 3(2) + (-1) + (0) + 1 + (1)^2 \\ &= -23 \end{split}$$

as required.

Solution 4.

Let α be as stated in the problem, we then have that

$$\alpha^3 = \alpha + 4 \tag{1}$$

Note that $\gamma = \frac{\alpha(\alpha+1)}{2} \notin \mathbb{Z}[\alpha]$ (this follows from the fact that in the vector space $\mathbb{Q}(\alpha)$ we can write γ as a unique linear combination of $1, \alpha, \alpha^2$ over \mathbb{Q}). We claim that γ is integral over \mathbb{Z} , with minimum polynomial $X^3 - X^2 - 3X - 2$. The following calculation

verifies this assertion

$$\begin{split} \gamma^{3} - \gamma^{2} - 3\gamma - 2 &= \frac{\alpha^{3}(\alpha + 1)^{3}}{8} - \frac{\alpha^{2}(\alpha + 1)^{2}}{4} - \frac{3\alpha(\alpha + 1)}{2} - 2\\ &= \frac{(\alpha + 4)(\alpha^{3} + 3\alpha^{2} + 3\alpha + 1)}{8} - \frac{\alpha(\alpha^{3}) + 2\alpha^{3} + \alpha^{2}}{4} - \frac{3\alpha^{2} - 3\alpha}{2} - 2\\ &= \frac{(\alpha + 4)(4\alpha + 3\alpha^{2} + 5)}{8} - \frac{\alpha(\alpha + 4) + 2(\alpha + 4) + \alpha^{2}}{4} - \frac{3\alpha^{2} + 3\alpha}{2} - 2\\ &= \frac{16\alpha^{2} + 24\alpha + 32}{8} - \frac{2\alpha^{2} + 6\alpha + 8}{4} - \frac{3\alpha^{2} + 3\alpha}{2} - 2\\ &= \frac{16\alpha^{2} + 24\alpha + 32}{8} - \frac{2\alpha^{2} + 6\alpha - 8 - 6\alpha^{2} - 6\alpha}{4}\\ &= 2\alpha^{2} + 3\alpha + 2 + \frac{-2\alpha^{2} - 6\alpha - 8 - 6\alpha^{2} - 6\alpha}{4}\\ &= 2\alpha^{2} + 3\alpha + 2 + \frac{-8\alpha^{2} - 12\alpha - 8}{4}\\ &= 0 \end{split}$$

as required. Thus, γ is integral over \mathbb{Z} but $\gamma \notin \mathbb{Z}[\alpha]$ which implies that $\mathbb{Z}[\alpha]$ is not the ring of integers.

We claim that the ring of integers is $\mathbb{Z}[\gamma]$ i.e $\{1, \gamma, \gamma^2\}$ is an integral basis. Clearly $\mathbb{Z}[\gamma]$ is contained in the ring of integers, thus, it suffices to show that $D(1, \gamma, \gamma^2)$ is squarefree (cf. remark 2.24 in Milne). Now (by proposition 2.33 in Milne)

$$D(1, \gamma, \gamma^2) = disc(X^3 - X^2 - 3X - 2)$$

Using the fact that $disc(X^3 + aX^2 + bX + c) = -27c^2 + 18cab + a^2b^2 - 4a^3c - 4b^3$ (cf. end of example 2.34 in Milne), we get that

$$D(1,\gamma,\gamma^2) = -107$$

which is prime and thus squarefree as required.

Solution 5.

Let α be as stated in the problem. We claim that the ring of integers is $\mathbb{Z}[\alpha]$, i.e $\{1, \alpha, \alpha^2\}$ forms an integral basis. Using Maple we obtain that

$$D(1, \alpha, \alpha^2) = 2^2.223$$

Note that 223 is a rational prime. If we let \mathcal{O} denote the ring of integers of $\mathbb{Q}(\alpha)$, then (by remark 2.24 in Milne)

$$D(1, \alpha, \alpha^2) = 2^2.223 = (\mathcal{O} : \mathbb{Z}[\alpha])^2.disc(\mathcal{O}/\mathbb{Z})$$

Thus, $\mathcal{O} : \mathbb{Z}[\alpha] \in \{1, 2\}$. However, by Stickelberger's theorem $disc(\mathcal{O}/\mathbb{Z}) \equiv 0$ or 1 mod 4, as $223 \equiv -1 \mod 4$ this forces $\mathcal{O} : \mathbb{Z}[\alpha] = 1$, which in turn implies that $\mathbb{Z}[\alpha]$ is the ring of integers.

By the remarks above it thus also follows that the prime factorization of the discriminant of this ring of integers is $2^2.223$.