
Algebraic Number Theory Homework 3 Rahbar Virk

Solution 1.
Let K ⊆ L ⊆ M be finite separable extensions of fields. Let σ1, . . . , σn be the distinct
K-embeddings of L into Ω, and let τ1, . . . , τm be the distinct L-embeddings of M into Ω,
where Ω is the galois closure of M over K. We then have that Ω/K is galois, and every
map σi, τj extends to an automorphism of Ω allowing us to compose maps. Now (by
corollary 2.19 in Milne)

TrL/K ◦ TrM/L =
n∑

i=1

σi ◦ (
m∑

j=1

τj) =
n∑

i=1

m∑
j=1

σi ◦ τj

The last equality follows as σis are homomorphisms. Now each σi ◦ τj is a K-embedding
of M into Ω and as our extensions are separable, the number of such mappings is mn =
[M : L][L : K] = [M : K]. To prove that TrM/K = TrL/K ◦TrM/L it thus suffices to show
that the σi ◦ τj are all distinct when restricted to M . Note that if σi ◦ τj = σx ◦ τy on
M then σi = σx on L as τj and τy are the identity on L. But as all the σis were distinct
we have that i = x which further implies that τj = τy on M , but then as the τjs were
distinct we have that j = y. Thus, the σi ◦ τj are all distinct as required.

Solution 2.
Let L = F2(x) and K = F2(t) (so K is the field of rational functions in t with coefficients
from F2), where x2 − t = 0 (note that the polynomial X2 − t over K has a single root
with multiplicity 2). Now, L/K is a non-separable extension. Using {1, x} as a basis for
L over K we then have, by definition

Disc(L/K) =

∣∣∣∣ TrL/K(1.1) TrL/K(1.x)
TrL/K(x.1) TrL/K(x.x)

∣∣∣∣
which by definition of the trace and using the fact that x2 = t, is

=

∣∣∣∣ (2) (0)
(0) (2t)

∣∣∣∣
= 4t2

but we are in F2(t), so

= 0

Solution 3.
We claim that the ring of integers of Q(α), where α is a root of the polynomial x3+x2−1,
is Z[α]. To show this it suffices to show that D(1, α, α2) is squarefree (cf. remark 2.24 in
Milne). We claim that D(1, α, α2) = −23.

Preliminarily note that if we let α = α1 and let α2, α3 be the galois conjugates of α1

over the galois closure of Q(α) then we have that

α1 + α2 + α3 = −1 (1)

α1α2 + α1α3 + α2α3 = 0 (2)

α1α2α3 = 1 (3)
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Furthemore combining (1), (2) and (3) we also obtain that

α2
1 + α2

2 + α2
3 = 1 (4)

α2
1α2 + α2

1α3 + α2
2α1 + α2

2α3 + α2
3α1 + α2

3α2 = −3 (5)

α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3 = 2 (6)

α1α2α
2
3 + α1α

2
2α3 + α2

1α2α3 = −1 (7)

α2
1α

2
2α3 + α2

1α2α
2
3 + α1α

2
2α

2
3 = 0 (8)

α3
1 = 1− α2

1 (9)

α3
2 = 1− α2

2 (10)

α3
3 = 1− α2

3 (11)

Now (by proposition 2.23 in Milne) we have that

D(1, α, α2) =
∏

1≤i<j

(αi − αj)
2

= (α3 − α2)
2(α3 − α1)

2(α2 − α1)
2

= (α2
2 + α2

3 − 2α2α3)(α
2
3 + α2

1 − 2α1α3)(α
2
2 + α2

1 − 2α2α1)

using (3) and (4) we then have

= (1− α2
1 −

2

α1

)(1− α2
2 −

2

α2

)(1− α2
3 −

2

α3

)

=
1

α1α2α3

(α1 − α3
1 − 2)(α2 − α3

2 − 2)(α3 − α3
3 − 2)

using (3), (9), (10) and (11) we then have

= (α2
1 + α1 − 3)(α2

2 + α2 − 3)(α2
3 + α3 − 3)

= −27 + 9(α1 + α2 + α3) + 9(α2
1 + α2

2 + α2
3)

−3(α1α2 + α2α3 + α1α3)− 3(α2
1α2 + α2

1α3 + α2
2α1 + α2

2α3 + α2
3α1 + α2

3α2)

−3(α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3) + (α1α2α

2
3 + α1α

2
2α3 + α2

1α2α3)

+(α2
1α

2
2α3 + α2

1α2α
2
3 + α1α

2
2α

2
3) + (α1α2α3) + (α1α2α3)

2

now using (1) through (9) we then have

= −27 + 9(−1) + 9(1)− 3(0)− 3(−3)− 3(2) + (−1) + (0) + 1 + (1)2

= −23

as required.

Solution 4.
Let α be as stated in the problem, we then have that

α3 = α + 4 (1)

Note that γ = α(α+1)
2

6∈ Z[α] (this follows from the fact that in the vector space Q(α)
we can write γ as a unique linear combination of 1, α, α2 over Q). We claim that γ is
integral over Z, with minimum polynomial X3−X2− 3X − 2. The following calculation
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verifies this assertion

γ3 − γ2 − 3γ − 2 =
α3(α + 1)3

8
− α2(α + 1)2

4
− 3α(α + 1)

2
− 2

=
(α + 4)(α3 + 3α2 + 3α + 1)

8
− α(α3) + 2α3 + α2

4
− 3α2 − 3α

2
− 2

using (1) we then have

=
(α + 4)(4α + 3α2 + 5)

8
− α(α + 4) + 2(α + 4) + α2

4
− 3α2 + 3α

2
− 2

using (1) again we have

=
16α2 + 24α + 32

8
− 2α2 + 6α + 8

4
− 3α2 + 3α

2
− 2

= 2α2 + 3α + 2 +
−2α2 − 6α− 8− 6α2 − 6α

4

= 2α2 + 3α + 2 +
−8α2 − 12α− 8

4
= 0

as required. Thus, γ is integral over Z but γ 6∈ Z[α] which implies that Z[α] is not the
ring of integers.

We claim that the ring of integers is Z[γ] i.e {1, γ, γ2} is an integral basis. Clearly Z[γ]
is contained in the ring of integers, thus, it suffices to show that D(1, γ, γ2) is squarefree
(cf. remark 2.24 in Milne). Now (by proposition 2.33 in Milne)

D(1, γ, γ2) = disc(X3 −X2 − 3X − 2)

Using the fact that disc(X3 + aX2 + bX + c) = −27c2 + 18cab + a2b2 − 4a3c − 4b3 (cf.
end of example 2.34 in Milne), we get that

D(1, γ, γ2) = −107

which is prime and thus squarefree as required.

Solution 5.
Let α be as stated in the problem. We claim that the ring of integers is Z[α], i.e {1, α, α2}
forms an integral basis. Using Maple we obtain that

D(1, α, α2) = 22.223

Note that 223 is a rational prime. If we let O denote the ring of integers of Q(α), then
(by remark 2.24 in Milne)

D(1, α, α2) = 22.223 = (O : Z[α])2.disc(O/Z)

Thus, O : Z[α] ∈ {1, 2}. However, by Stickelberger’s theorem disc(O/Z) ≡ 0 or 1
mod 4, as 223 ≡ −1 mod 4 this forces O : Z[α] = 1, which in turn implies that Z[α] is
the ring of integers.

By the remarks above it thus also follows that the prime factorization of the discrim-
inant of this ring of integers is 22.223.
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