
Algebraic Number Theory Homework 2 Rahbar Virk

Solution 1.
The painful ‘nitty gritty’ proof:
Note that Q[x, y] is a UFD (as Q[x] is a UFD, Q[x, y] ∼= Q[x][y] and a polynomial ring
over a UFD is a UFD), furthermore in a UFD a non-zero principal ideal is prime iff its
generator is irreducible. Thus, it suffices to show that x2 − y3 is irreducible over Q[x, y].
We will view A = Q[x, y] as Q[y][x], i.e the polynomial ring in one indeterminate x over
the ring Q[y]. Suppose x2 − y3 is reducible then there exist polynomials p1, p2 ∈ A such
that x2 − y3 = p1p2. As Q[y] is an integral domain we have that either both p1 and p2

have degree 1 or one of them has degree 2 and the other degree 0. We deal with the latter
case first. Assuming without loss of generality that p1 has degree 0, we have

x2 − y3 = q1(y)(q2(y)x2 + q3(y)x + q4(y)),

here p1 = q1(y), and q1(y), q2(y), q3(y), q4(y) ∈ Q[y]. Now looking at the degree of q1(y)
in Q[y] and the coefficient of x2 we have that q1(y) (and consequently p1) is a unit.

If both p1 and p2 have degree 1 then

x2 − y3 = (q1(y)x + q2(y))(q3(y)x + q4(y))

= q1(y)q3(y)x2 + (q1(y)q4(y) + q2(y)q3(y))x + q2(y)q4(y)

for some q1(y), q2(y), q3(y), q4(y) ∈ Q[y]. So q1(y)q3(y) = 1 forcing q1(y) and q3(y) to be
units; also q2(y)q4(y) = y3 and using unique factorization in Q[y] we have that either,
(without loss of generality) q2(y) = k, q4(y) = 1

k
y3 or (again without loss of generality)

q2(y) = ky, q4(y) = 1
k
y2, for some k ∈ Q×. Both cases lead to a contradiction when we

note that q1(y)q4(y) + q2(y)q3(y) = 0 and that q1(y), q3(y) are units.

Thus, p = x2 − y3 is irreducible over A and A/p is an integral domain. To see that
it is not integrally closed consider the polynomial T 3 − x, this has a root in Frac(A/p),
namely x

y
, (x, y denote the image of x, y respectively in A/p). However, clearly x

y
is not

in A/p.
The slick proof (sketch):
The map x → t3 and y → t2 induces a ring homomorphism φ : Q[x, y] → Q[t]. Now note
that an element in Q[x, y] differs from an element in (x2 − y3) by a polynomial p(x, y) of
degree at most 2 in y, furthermore the exponents of φ(xrys) are distinct for 0 ≤ s ≤ 2.
These two facts show that ker(φ) = (x2 − y3), thus Q[x, y]/(x2 − y3) is isomorphic to a
subring of Q[t] which being an integral domain implies that (x2 − y3) is prime.

Solution 2.
Let A, B, α, β be as stated in the problem. It suffices to show (by Proposition 2.11, Milne)
that there exists a finitely generated A-submodule, say M , of B such that αM ⊂ M .
Now as α ∈ A[β] ∩ A[β−1] we have that

α = anβ
n + an−1β

n−1 + · · ·+ a0

and α = bmβ−m + bm−1β
−m+1 + · · ·+ b0
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where a0, . . . , an, b0, . . . , bm ∈ A. Let M be the A-module generated by {βn, βn−1, . . . , 1, β−1, . . . , β−m}.
We claim that αM ⊂ M . It suffices to show that αβi ∈ M for −m ≤ i ≤ n. Clearly,
α.1 = α ∈ M . If −m ≤ i < 0 then using the first representation for α we have that

αβi = anβ
n+i + an−1β

n−1+i + · · ·+ a0β
i

every term in this sum lies in M . Similarly, if 0 < i ≤ n then using the second represen-
tation for α we have that

αβi = bmβ−m+i + bm−1β
−m+1+i + · · ·+ b0β

i

every term in this sum too lies in M . Thus, αM ⊂ M as required.

Solution 3.
Yes, 3+2

√
6

1−
√

6
is an algebraic integer as it is a root of the monic polynomial x2 + 6x + 3.

(Furthermore, 3+2
√

6
1−
√

6
= 3+2

√
6

1−
√

6
1+
√

6
1+
√

6
= 15+5

√
6

−5
= −3 −

√
6 which being the sum of two

algebraic integers must also be an algebraic integer.)

Solution 4.
We will assume d 6= 0, 1 and squarefree throughout. An element of Q[

√
d] is integral over

Z (and hence in the ring of integers of Q[
√

d] iff its minimum polynomial over Q has
coefficients in Z (Proposition 2.9, Milne). The minimum polynomial of α = r + s

√
d ∈

Q[
√

d], r, s ∈ Q, s 6= 0 is given by

X2 − 2rX + (r2 − s2d)

Thus α is in the ring of integers iff

2r ∈ Z, r2 − s2d ∈ Z

Suppose α is in the ring of integers, then 4(r2− s2d) = (2r)2− (2s)2d ∈ Z, and as 2r ∈ Z
we have that (2s)2d ∈ Z, but as d is squarefree and 2s ∈ Q we have that (2s)2 ∈ Z,
consequently we have that 2s ∈ Z. Furthermore

4(r2 − s2d) = (2r)2 − (2s)2d ≡ 0 mod 4

If d ≡ 2, 3 mod 4 then (as squares are always ≡ 0 or ≡ 1 mod 4) we get that (2r)2 ≡
(2s)2 ≡ 0 mod 4. Consequently 2r and 2s are even rational integers, making r and
s rational integers. If d ≡ 1 mod 4 then (proceeding as above) we get that either
(2r)2 ≡ (2s)2 ≡ 0 mod 4 and consequently r, s ∈ Z; or that (2r)2 ≡ (2s)2 ≡ 1 mod 4
and r = 2m+1

2
, s = 2n+1

2
, m, n ∈ Z.

We have so far thus shown that if d ≡ 2, 3 mod 4 then

α ∈ {m + n
√

d | m, n ∈ Z}

and if d ≡ 1 mod 4 then

α ∈ {2m + 1 + (2n + 1)
√

d

2
| m, n ∈ Z} ∪ {m + n

√
d | m, n ∈ Z}
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the latter of which is also equivalent to saying that

α ∈ {m + n

(
1 +

√
d

2

)
| m, n ∈ Z}

Conversely if α ∈ {m + n
√

d | m,n ∈ Z then clearly α is in the ring of integers of

Q[
√

d], and if d ≡ 1 mod 4 then for β = n(1+
√

d)
2

, n ∈ Z, set

f(x) = X2 − nX +
n2(1− d)

4

and note that n2(1−d)
4

∈ Z as d ≡ 1 mod 4. Now f(β) = 0 and thus β is integral over Z
and consequently the set

{m + n

(
1 +

√
d

2

)
| m, n ∈ Z}

is also contained in the ring of integers if d ≡ 1 mod 4.

To sum up, the ring of integers for Q[
√

d] is Z[
√

d] if d ≡ 2, 3 mod 4 and Z[1+
√

d
2

] if d ≡ 1
mod 4.

Solution 5.
Let A, K and f(x) be as stated in the problem. Then

f(x) = p1(x)p2(x)

for some p1(x), p2(x) ∈ K[x] where p1(x) and p2(x) are not units. Furthermore, we may
assume that p1(x) and p2(x) are monic. Let L be a splitting field of f(x) over K. Then

f(x) = (x− α1) . . . (x− αn)

for some αi ∈ L, 1 ≤ i ≤ n. Now each αi is integral over A (it is a root of the
monic polynomial f(x) ∈ A[x], thus the ring R = A[α1, . . . , αn] is integral over A. Also,
each coefficient of p1(x) and p2(x) lies in R and is thus also integral over A, but these
coefficients also lie in K and as A is integrally closed we have that they lie in A and thus
p1(x), p2(x) ∈ A[x] as required.
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