ALGEBRAIC NUMBER THEORY HOMEWORK 2 RAHBAR VIRK

Solution 1.

The painful ‘nitty gritty’ proof:

Note that Q[z,y] is a UFD (as Q[z] is a UFD, Q|z,y] = Q[z][y] and a polynomial ring
over a UFD is a UFD), furthermore in a UFD a non-zero principal ideal is prime iff its
generator is irreducible. Thus, it suffices to show that z* — ¢? is irreducible over Q[z, y].
We will view A = Q|z,y] as Q[y][z], i.e the polynomial ring in one indeterminate x over
the ring Q[y]. Suppose 2% — ¢ is reducible then there exist polynomials p;, ps € A such
that 22 — ¢ = pipo. As Qly| is an integral domain we have that either both p; and py
have degree 1 or one of them has degree 2 and the other degree 0. We deal with the latter
case first. Assuming without loss of generality that p; has degree 0, we have

22—y = W) (@eW)2® + )T+ u®y)),

here p1 = ¢i(y), and q1(y), ¢2(¥), gs(y), qa(y) € Qly]. Now looking at the degree of ¢1(y)
in Q[y] and the coefficient of x? we have that ¢;(y) (and consequently p;) is a unit.

If both p; and ps have degree 1 then

? -yt = (aW)r+ e®)(sy)r + auy))
= aWaW)e® + (@W)a) + e@a)r + ey)auly)

for some q1(y), ¢2(¥), ¢3(y), aa(y) € Qly]. So q1(y)qs(y) = 1 forcing ¢1(y) and g3(y) to be

units; also ¢o(y)qs(y) = > and using unique factorization in Q[y] we have that either,

(without loss of generality) ¢2(y) = k, qu(y) = 1y* or (again without loss of generality)

w(y) = ky,qi(y) = %yQ, for some k € Q*. Both cases lead to a contradiction when we
note that ¢1(y)g(y) + ¢2(y)gs(y) = 0 and that ¢1(y), gs(y) are units.

Thus, p = 2* — y3 is irreducible over A and A/p is an integral domain. To see that
it is not integrally closed consider the polynomial T3 — 7, this has a root in Frac(A/p),
namely %, (7,7 denote the image of x,y respectively in A/p). However, clearly % is not
in A/p.

The slick proof (sketch):

The map z — t* and y — t? induces a ring homomorphism ¢ : Q[z, y] — Q[t]. Now note
that an element in Q[z,y| differs from an element in (2? — ) by a polynomial p(z,y) of
degree at most 2 in y, furthermore the exponents of ¢(x"y*) are distinct for 0 < s < 2.
These two facts show that ker(¢) = (z* — y?), thus Q[z,y]/(2* — y3) is isomorphic to a
subring of Q[¢] which being an integral domain implies that (z* — 3?) is prime. ]

Solution 2.

Let A, B, a, 3 be as stated in the problem. It suffices to show (by Proposition 2.11, Milne)
that there exists a finitely generated A-submodule, say M, of B such that aM C M.
Now as o € A[3] N A[37!] we have that

a = @B+ a1+ +ag
anda = by, 3™ + by 18 4+ by



where ag, . .., a,,bg, ..., b, € A. Let M be the A-module generated by {5", 5" 1,..., 1,571, ...

We claim that aM C M. It suffices to show that a3 € M for —m < i < n. Clearly,
al=a€ M. If —m < i < 0 then using the first representation for a we have that

af' = a0+ a, 1 S 4 g

every term in this sum lies in M. Similarly, if 0 < ¢ < n then using the second represen-
tation for a we have that

Bt = by B 4 by BT b B

every term in this sum too lies in M. Thus, aM C M as required. O
Solution 3.

Yes, 3;{}? is an algebraic integer as it is a root of the monic polynomial x? + 6z + 3.
(Furthermore, 3;:2\/‘/66 = 31t2\\//gé }iﬁ - 15t55‘/6 = —3 — /6 which being the sum of two
algebraic integers must also be an algebraic integer.) O]

Solution /.

We will assume d # 0,1 and squarefree throughout. An element of Q[v/d] is integral over
Z (and hence in the ring of integers of Q[v/d] iff its minimum polynomial over Q has
coefficients in Z (Proposition 2.9, Milne). The minimum polynomial of o = r 4 sv/d €

Q[Vd], r,s € Q, s # 0 is given by

X% —2rX + (r* — s%d)
Thus « is in the ring of integers iff

2reZ, r*—s*de’
Suppose « is in the ring of integers, then 4(r? — s*d) = (2r)* — (25)?d € Z, and as 2r € Z
we have that (2s)%d € Z, but as d is squarefree and 2s € Q we have that (2s)? € Z,
consequently we have that 2s € Z. Furthermore

4(r? — s*d) = (2r)* — (25)’d =0 mod 4

If d = 2,3 mod 4 then (as squares are always = 0 or = 1 mod 4) we get that (2r)% =
(25)2 = 0 mod 4. Consequently 2r and 2s are even rational integers, making r and

s rational integers. If d = 1 mod 4 then (proceeding as above) we get that either
(2r)* = (2s)2 = 0 mod 4 and consequently 7, s € Z; or that (2r)? = (25)> =1 mod 4
and r = 280 g = 20ty o € 7,

We have so far thus shown that if d = 2,3 mod 4 then
ae{m+nVd|mmneZ}
and if d =1 mod 4 then

2 1+ (2 1
aed mT +(2n+ )\/a]m,neZ}U{m+n\/E|m,n€Z}

’ﬁim}'



the latter of which is also equivalent to saying that

ae{m+n<1+2\/;l> | m,n € Z}

Conversely if o € {m + nVd | m,n € Z then clearly « is in the ring of integers of
Q[Vd), and if d =1 mod 4 then for g = "D ) € 7, set

21—d
and note that @ €Zasd=1 mod 4. Now f(8) =0 and thus 3 is integral over Z
and consequently the set
1 d
(m+n < +2f> | m,n € Z)

is also contained in the ring of integers if d =1 mod 4.

To sum up, the ring of integers for Q[v/d] is Z[V/d] if d = 2,3 mod 4 and Z[*24] if d = 1

2
mod 4. O

Solution 5.
Let A, K and f(x) be as stated in the problem. Then

f(x) = p1(x)pa(x)

for some py(x), pa(x) € K|x] where pi(z) and py(z) are not units. Furthermore, we may
assume that p;(z) and py(x) are monic. Let L be a splitting field of f(z) over K. Then

flz)=(r—a1)...(x — )

for some o; € L, 1 < i < n. Now each «; is integral over A (it is a root of the
monic polynomial f(x) € A[z], thus the ring R = Aoy, ..., a,) is integral over A. Also,
each coefficient of pi(x) and py(x) lies in R and is thus also integral over A, but these
coefficients also lie in K and as A is integrally closed we have that they lie in A and thus
p1(z), p2(x) € Alz] as required. O



