
Math 748 Homework 9
Due Wednesday, November 8

Note: there are two pages to this assignment

1. In class, we showed that if K = Q(
√
−d) is an imaginary quadratic field (d > 0 squarefree) and a

primitive mth root of unity ζm is contained in K, then m = 1, 2, 3, 4, or 6. Use this to determine
for all K the set of roots of unity µ(K) contained in K.

2. The continued fraction expansion for α ∈ R is the writing of α as

a0 +
1

a1 + 1
a2+ 1

···

(1)

with each ai ∈ Z. To find the ai, first let [α] be the greatest integer less than or equal to α, so
that a0 = [α]. Let β be the reciprocal of the fractional part α − [α], so that from (1) we have
β = a1 + (1/(a2 + · · ·)). Thus a1 = [β]. Continue in this manner to obtain the other ai.

If we truncate the expression in (1) at the nth step, we obtain a rational number pn/qn. For
instance, p0/q0 = a0/1, p1/q1 = a0 + 1/a1 = (a0a1 + 1)/a1. The numbers pn and qn are called the
convergents of α, and are given by the Fibonacci-like recurrences

pn+1 = an+1pn + pn−1 pq+1 = an+1qn + qn−1

with initial values p0, p1, q0, q1 as given above. The rational numbers pn/qn give successively better
approximations of α.

Now let α =
√

d, where d > 0 is squarefree and d ≡ 2, 3 mod 4. The numbers pn/qn are nearly√
d, meaning that p2

n/q
2
n − d is small. Thus it should not be surprising that p2

n − dq2
n is a small

integer. More surprisingly, there is the following result first proved by Lagrange: let a2−db2 = ±1
for some a, b ∈ Z. Then a/b = pn/qn for some n. Since both pn and qn strictly increase with n,
it follows that the smallest n with p2

n − dq2
n = ±1 gives us the fundamental unit in Q(

√
d): it’s

ε = pn + qn

√
d (that’s the only one that’s greater than 1). Thus we have an algorithm for finding

ε, namely keep computing convergents until you find pn/qn such that p2
n − dq2

n = ±1. Since the
Unit Theorem tells us there must be a fundamental unit, this must happen for some n. In fact, it
is possible to say which one. The continued fraction expansion for

√
d is eventually periodic (this

is true for α if and only if α is contained in a quadratic extension of Q). If the length of this cycle
is l, then n = l − 1 gives the fundamental unit.

Using this, find the fundamental unit of the ring of integers in Q(
√

11), Q(
√

19), and Q(
√

22).
Don’t use a computer, except to perform basic arithmetic to find the appropriate continued fraction
expansions and to compute p2

n − dq2
n.

3. Let K be a cubic number field with exactly one real embedding, and let ε be the unique funda-
mental unit > 1. We wish to show that ε3 > (|∆K | − 24)/4. In class, we did the following: let
ρeiθ, ρe−iθ be the nonreal conjugates of ε. We showed that ε = ρ−2. We calculated |∆′|, where
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∆′ is the discriminant of {1, ε, ε2}; indeed, we showed that |∆′| = (c − cos θ)2 · 16 sin2 θ, where
2c = ρ3 + ρ−3. We determined that the largest |∆′| can be is when cos θ = β, where β is a root of
x2 − (c/2)x − 1/2 and ρ6 − 4β2 − 4β4 < 0. Converting the expression for |∆′| into a function of
cos θ now gives

|∆′| ≤ 16(c2 − 2βc + β2)(1− β2). (2)

Use (2), the fact that β2 − (c/2)β − 1/2 = 0, and the bound involving ρ and β to deduce that
|∆′| < 4ρ−6 + 24. Then use this to conclude that ε3 > (|∆K | − 24)/4.

Bonus Problem (2 points): Use the above style of argument to derive a lower bound for the
fundamental unit in a real quadratic field. This bound can sometimes be used to give an alternate
proof to Lagrange’s that the units produced by the algorithm in problem 2 are indeed fundamental.

4. Find the fundamental unit in K = Q( 3
√

2) (Hint: ∆K = −108. Also, what is the norm of 3
√

2−1?)


