Math 748 Homework 5

Due Wednesday, October 11

- 1. Give an example of an integral domain B, a non-zero prime ideal \mathfrak{p} in B, and a subring A of B such that $\mathfrak{p} \cap A = 0$. (Note that by a result from class this can't happen if B is integral over A.)
- 2. Let \mathfrak{a} be a non-zero integral ideal of a Dedekind domain B. Show that in every ideal class of Cl(B) there is an integral ideal relatively prime to \mathfrak{a} .
- 3. Show that every ideal \mathfrak{a} in a Dedekind *B* domain can be generated by two elements, i.e. there are $a, b \in B$ such that $\mathfrak{a} = (a, b)$ (which is the same as aB + bB). Do not use localizations in your proof.
- 4. Let $d \in \mathbb{Z}$ be squarefree and p a prime number number not dividing 2d. Let $K = \mathbb{Q}(\sqrt{d})$. Show that the ideal $(p) = pO_K$ is prime if and only if the congruence $x^2 \equiv d \mod p$ has no solutions.