Math 748 Homework 4

Due Wednesday, October 4

- 1. Show the ring $\mathbb{Z}[x]$ is Noetherian and integrally closed in its field of fractions, but is not a Dedekind domain.
- 2. Let R be a subring of the ring of integers O_K of a number field K. Show that the following are equivalent:
 - (a) The index $[O_K : R]$ (as abelian groups) is finite.
 - (b) R contains a basis of K over \mathbb{Q} .
 - (c) The field of fractions of R is K.

Rings satisfying these conditions are called *orders* in K. Show that every order R in K satisfies:

- (i) R is Noetherian
- (ii) Every prime ideal of R is maximal.
- (iii) If $R \neq O_K$ then R is not integrally closed in K.
- 3. Give an example that shows that unique factorization of ideals fails in the ring $\mathbb{Z}[\sqrt{-3}]$. (Hint: let $\mathfrak{a} = (2, 1 + \sqrt{-3})$ and show $\mathfrak{a} \neq (2)$ but $\mathfrak{a}^2 = (2)\mathfrak{a}$. Conclude unique factorization fails.)
- 4. Let B be an integral domain in which all nonzero ideals admit a unique factorization into prime ideals. Show that B is a Dedekind domain.