Math 748 Homework 3

Due Wednesday, September 27

- 1. Let $K \subseteq L \subseteq M$ be separable extensions of fields. Show that $\operatorname{Tr}_{M/K} = \operatorname{Tr}_{L/K} \circ \operatorname{Tr}_{M/L}$ (a precisely similar argument shows that $N_{M/K} = N_{L/K} \circ N_{M/L}$, but you only need to do the trace version).
- 2. Let L/K be your favorite non-separable extension (say explicitly what it is). Find Disc(L/K).
- 3. Find the ring of integers of the number field $\mathbb{Q}(\alpha)$, where α is a root of the irreducible polynomial $x^3 + x^2 1$.
- 4. Show that if α is a root of $x^3 x 4$ (which is irreducible), then $\mathbb{Z}[\alpha]$ is not the ring of integers in $\mathbb{Q}(\alpha)$ [Hint: consider the minimal polynomial of $\alpha(\alpha + 1)$.] Find an integral basis for $\mathbb{Q}(\alpha)$ (be sure to prove that what you have found is indeed an integral basis).
- 5. Find the ring of integers of the number field $K = \mathbb{Q}(\alpha)$, where α is a root of $x^3 3x^2 + 2$ (which is irreducible). What is the prime factorization of the discriminant Δ_K of this ring of integers?