PROBLEM SET 7

DUE MAY 17

1. Regular problems

1.1. Show that

- (i) $\operatorname{zeroes}(0) = k^n$ and $\operatorname{zeroes}(1) = \emptyset$.
- (ii) For any family of ideals $a_i \in k[x_1, \ldots, x_n], i \in I$:

$$\operatorname{zeroes}(\bigcup_{i\in I}\mathfrak{a}_i) = \bigcap_{i\in I}\operatorname{zeroes}(\mathfrak{a}_i)$$

- (iii) $\operatorname{zeroes}(\mathfrak{a} \cap \mathfrak{b}) = \operatorname{zeroes}(\mathfrak{a}\mathfrak{b}) = \operatorname{zeroes}(\mathfrak{a}) \cup \operatorname{zeroes}(\mathfrak{b})$ for any ideals $\mathfrak{a}, \mathfrak{b} \subseteq k[x_1, \ldots, x_n]$.
- (iv) Let $\mathfrak{a}, \mathfrak{b} \subseteq k[x_1, \ldots, x_n]$ be ideals. If $\mathfrak{a} \subseteq \mathfrak{b}$, then $\operatorname{zeroes}(\mathfrak{b}) \subseteq \operatorname{zeroes}(\mathfrak{a})$.
- (v) Let $X, Y \subseteq k^n$ be algebraic sets. If $X \subseteq Y$, then $I(Y) \subseteq I(X)$.
- (vi) zeroes(I(X)) = X for all algebraic sets $X \subseteq k^n$.
- (vii) $\sqrt{\mathfrak{a}} \subseteq I(\operatorname{zeroes}(\mathfrak{a}))$ for all ideals $\mathfrak{a} \subseteq k[x_1, \ldots, x_n]$

1.2. Let k be a field. Prove or find a counterexample: every algebraic subset of k consists of finitely many points.

1.3. Show that a morphism of algebraic sets $f: X \to Y$ is an isomorphism if and only if $f^*: k[Y] \to k[X]$ is an isomorphism.

1.4. Prove or find a counterexample: there exists no algebraic set X with $k[X] \simeq k[z]/z^2$.

1.5. Let $C \subset k^2$ be the set of solutions of the polynomial $x^3 - y^2 = 0$. Define $f: \mathbf{A}^1 \to C$ by $t \mapsto (t^2, t^3)$. Show that this morphism is not an isomorphism of algebraic sets. Sketch $x^3 - y^2 = 0$ in \mathbf{R}^2 . Make an observation regarding your sketch and the fact that f is not an isomorphism.

1.6. Let B be an integral domain and let $A \subseteq B$ be a subring. Assume that B is integral over A. Show that A is a field if and only if B is a field.

1.7. Let k be a field and let $B = k[x, y]/(x^3 - y^2)$. Find a k-subalgebra $A \subseteq B$ such that B is finite over A and A is isomorphic to a polynomial ring over k. Sketch $x^3 - y^2 = 0$ in \mathbb{R}^2 and interpret your construction in terms of this picture.

1.8. Let k be a field. Let $g \in k[x_1, \ldots, x_n]$. Show that the map

 $f: k[x_1, \dots, x_n] \to k[x_1, \dots, x_n, t]/(1 - tg), \quad h(x_1, \dots, x_n) \mapsto h(x_1, \dots, x_n)$ is injective whenever $g \neq 0$.

2. Optional problems

2.1. Let k be a field and let B = k[x, y]/(xy-1). Find a k-subalgebra $A \subseteq B$ such that B is finite over A and A is isomorphic to a polynomial ring over k. Sketch xy-1=0 in \mathbb{R}^2 and interpret your construction in terms of this picture. Note that taking A = k[x] above does not work. Make an observation relating this fact and the picture you just sketched.

DUE MAY 17

2.2. Let $C \subset k^2$ be the set of solutions of the polynomial $x^3 - y^2 = 0$. Show that $k[C] = k[x, y]/(x^3 - y^2)$.

Department of Mathematics, University of California, Davis, CA 95616 $E\text{-}mail\ address:\ virk@math.ucdavis.edu$