PROBLEM SET 3

DUE APRIL 19

1. Regular problems

1.1. Let F be an $n \times n$ matrix with coefficients in some commutative ring (with 1) A. Let $f: A^{\oplus n} \to A^{\oplus n}$ be left multiplication by F (in terms of the 'usual' basis for $A^{\oplus n}$) and let d denote the ideal generated by det F. Prove or find a counterexample: the image of f is equal to dA^n .

1.2. Give an example of the following (remember you must prove/justify why your example satisfies the required conditions):

- (i) a module that is *not* finitely generated;
- (ii) a module that is finitely generated but *not* finitely presented.

1.3. Write the abelian group generated by x, y and the relation 3x + 4y = 0 as a direct sum of cyclic groups.

1.4. Let $i = \sqrt{-1}$ and let V be the $\mathbf{Z}[i]$ module generated by elements v_1, v_2 and relations

$$(1+i)v_1 + (2-i)v_2 = 0,$$
 $3v_1 + 5iv_2 = 0.$

Write this module as a direct sum of cyclic modules.

1.5. Classify finitely generated modules over each of the following rings:

- (i) Z/4Z;
- (ii) Z/6Z;

(iii) $\mathbf{Z}/n\mathbf{Z}$.

1.6. Let $K \supset F$ be a field extension, $\alpha \in K$ algebraic over F. Let f(x) be the irreducible polynomial of α over F. Show that this terminology is justified, i.e., f(x) is indeed irreducible over F.

1.7. Show that $\mathbf{Q}(\sqrt{-1}, \sqrt{5}) = \mathbf{Q}(\sqrt{-1} + \sqrt{5}).$

1.8. Let α be the real cube root of 2. Compute the irreducible polynomial for $1 + \alpha^2$ over **Q**.

1.9. Determine the irreducible polynomial for $\alpha = \sqrt{3} + \sqrt{5}$ over each of the following fields.

(i) **Q**; (ii) **Q** $(\sqrt{5});$

- (ii) $\mathbf{Q}(\sqrt{5})$; (iii) $\mathbf{Q}(\sqrt{10})$;
- $(11) \quad \mathbf{Q}(\sqrt{10}),$
- (iv) **Q** $(\sqrt{15})$.

2. Optional problems

2.1. Let G be a finite abelian group and let $\chi: G \to \mathbf{C}^{\times}$ be a non-trivial homomomorphism. Prove that

$$\sum_{g \in G} \chi(g) = 0.$$

DUE APRIL 19

2.2. An abelian group G is said to be *torsion free* if $g \in G$, $g \neq 0$ and kg = 0 for $k \in \mathbb{Z}$ implies k = 0. Prove that a finitely generated torsion free abelian group is a finitely generated free group.

2.3. Let A be a subring of $\mathbf{C}[x]$ that contains C but is not equal to C. Show that $\mathbf{C}[x]$ is a finitely generated A-module.

2.4. Let $\varphi \colon \mathbf{Z}^n \to \mathbf{Z}^n$ be a homomorphism given by multiplication by an integer matrix A. Show that the image of φ is of finite index if and only if A is non-singular and that if so, then the index is equal to $|\det A|$.

Department of Mathematics, University of California, Davis, CA 95616 E-mail address: wirk@math.ucdavis.edu